精英家教网 > 高中数学 > 题目详情

【题目】已知关于的不等式 的解集为.

(1)若,求的取值范围;

(2)若存在两个不相等负实数,使得,求实数的取值范围;

(3)若恰有三个整数在集合中,求的取值范围.

【答案】(1);(2(3)

【解析】

1)根据解集,分为进行讨论,分别得到的范围,得到答案;(2)根据解集,可得,根据为两个不相等负实数,得到,根据韦达定理,得到的不等式,解出的范围,得到答案;(3)根据解集中恰有个整数,得到,设并判断出满足题意,根据对称性得到也满足,则要求时,,从而得到关于的不等式,解出的范围,得到答案.

1)不等式,其解集

①当时,恒成立,符合题意;

②当时,则,即

解得

综上所述:

2)因为不等式的解集为

为两个不相等负实数,

可得,即

解得

综上可得,.

3)解集中恰有个整数,可得

,开口向下,对称轴为

可得

可知解集中的三个整数一定有

根据二次函数的对称性得到,还有一个整数一定为

此时已满足解集中恰有三个整数,则要求

,即

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全文的人数比不选全文的人数少10.

1)估计在男生中,选择全文的概率.

2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;

选择全文

不选择全文

合计

男生

5

女生

合计

附:,其中.

P

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某圆的极坐标方程为

(1)圆的普通方程和参数方程

(2)圆上所有点的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的上顶点为A,以A为圆心,椭圆的长半轴为半径的圆与y轴的交点分别为.

(1)求椭圆的方程;

(2)设不经过点A的直线与椭圆交于P、Q两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线是以点为圆心的圆的一部分,其中是圆的切线,且,曲线是抛物线的一部分,,且恰好等于圆的半径.

1)若米,米,求的值;

2)若体育馆侧面的最大宽度不超过75米,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信已成为人们常用的社交软件,“微信运动”是由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK或点赞.现从小明的微信朋友圈内随机选取了50人(男、女各25人),并记录了他们某一天的走路步数,并将数据整理如下表:

步数

性别

0~3000

3001~6000

6001~9000

9001~12000

>12000

1

1

3

15

5

0

4

11

8

2

若某人一天走路的步数超过9000步被系统评定为“积极型”,否则被系统评定为“懈怠型”。

(1)利用样本估计总体的思想,估计小明的所有微信好友中每日走路步数超过12000步的概率;

(2)根据题意完成下面的2×2列联表,并据此判断能否有99.5%的把握认为“评定类型”与“性别”有关?

积极型

懈怠型

总计

总计

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案