精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的前n项和为Sn=pn2-n(p∈R,且p≠0),且a2,a3,a5依次成等比数列.
(1)求数列{an}的通项;
(2)若数列{bn}满足bn=n•2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

分析 (1)由题意得a2=3p-1,a3=5p-1,a5=9p-1,从而求通项公式;
(2)化简bn=n•2${\;}^{{a}_{n}}$=n•4n-1,从而利用错位相减法求数列的和.

解答 解:(1)a2=S2-S1=4p-2-(p-1)=3p-1,
a3=S3-S2=9p-3-(4p-2)=5p-1,
a5=S5-S4=25p-5-(16p-4)=9p-1,
∵a2,a3,a5依次成等比数列,
∴(5p-1)(5p-1)=(3p-1)(9p-1),
解得,p=1,
故a1=S1=1-1=0,
an=Sn-Sn-1=pn2-n-(p(n-1)2-(n-1))
=(2n-1)p-1=2n-2,
a1=0也满足an=2n-2,
故数列{an}的通项公式为an=2n-2;
(2)bn=n•2${\;}^{{a}_{n}}$=n•4n-1
故Tn=1+2•4+3•42+…+n•4n-1
4Tn=1•4+2•42+3•43+…+(n-1)•4n-1+n•4n
故3Tn=-1-4-42-…-4n-1+n•4n
故3Tn=n•4n-$\frac{{4}^{n}-1}{4-1}$,
故Tn=$\frac{(3n-1){4}^{n}+1}{9}$.

点评 本题考查了数列的通项公式及前n项和公式的应用及错位相减法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的偶函数f(x)是以π为最小正周期的周期函数,且当$x∈[0,\frac{π}{2}]$时,$f(x)=sinx,则f(\frac{8π}{3})$的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且满足a1=1,an+1=Sn+1(n∈N+
(1)求{an}的通项公式;
(2)数列{bn}是等差数列,前n项和为Tn,若T3=30,bn≥0(n∈N+)且a1+b1,a2+b2,a3+b3成等比数列,求Tn
(3)证明:$\frac{{T}_{n}}{{a}_{n}}$≤9(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在矩形ABCD中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二次函数y=ax2+bx+c(a>0)的图象是抛物线,其焦点到准线的距离是1,则a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overline{a}$|=1,|$\overrightarrow{b}$|=2,若$\overrightarrow{a}$-2$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$互相垂直,则实数k的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log${\;}_{\frac{1}{2}}$$\frac{1-kx}{x-1}$为奇函数.
(1)求常数k的值;
(2)若a>b>1,试比较f(a)与f(b)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=f(x)=3x+1在点x=2处的瞬时变化率估计是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设Sn为数列{$\frac{2n}{{a}_{n}+1}$}的前n项和,求证:1≤Sn<4.

查看答案和解析>>

同步练习册答案