精英家教网 > 高中数学 > 题目详情
20.若有以下命题:其中正确的命题序号是①③.
①两个相等向量的模相等;
②若$\overrightarrow{a}$和$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}=\overrightarrow{b}$;
③相等的两个向量一定是共线向量;
④$\overrightarrow{a}∥\overrightarrow{b},\overrightarrow{c}∥\overrightarrow{b}$,则$\overrightarrow{a}∥\overrightarrow{c}$;
⑤零向量是唯一没有方向的向量;
⑥两个非零向量的和可以是零.

分析 根据相等向量、单位向量、共线向量,以及零向量的定义,及向量加法的几何意义即可判断每个命题的正误,从而找出正确命题的序号.

解答 解:①长度相等,方向相同的向量为相等向量,∴该命题正确;
②单位向量只是长度为1,方向不确定,∴该命题错误;
③相等向量的方向相同,所以一定共线,∴该命题正确;
④若$\overrightarrow{b}=\overrightarrow{0}$,则$\overrightarrow{a}$与$\overrightarrow{c}$不一定平行,∴该命题错误;
⑤零向量的长度为0,方向不确定,即零向量有方向,∴该命题错误;
⑥向量的和仍是一个向量,不会是一个数,∴该命题错误;
∴正确的命题的序号为:①③.
故答案为:①③.

点评 考查相等向量,单位向量,共线向量,及零向量的定义,以及向量加法的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知圆x2+y2=10,△ABC内接于此圆,A点的坐标(1,3).若△ABC的重心G($\frac{2}{3}$,$\frac{2}{3}$),则线段BC的中点坐标为($\frac{1}{2}$,-$\frac{1}{2}$),直线BC的方程为x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图:四棱柱ABCD-A1B1C1D1中,侧棱垂直与底面,AB∥CD,AD⊥AB,AB=2,AD=$\sqrt{2}$,AA1=3,E为CD上一点,DE=1,EC=3.
(Ⅰ)证明:BE⊥平面BB1C1C;
(Ⅱ)求点B1到平面EA1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=4x+a•4-x是偶函数.
(1)求a的值;
(2)证明:对任意实数x1和x2都有$\frac{1}{2}$[f(x1)+f(x2)]≥f($\frac{{x}_{1}+{x}_{2}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若抛物线y2=2px(p>0)上的一点A(6,y)到焦点F的距离为10,则p的值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.关于x的方程x2+y2+2mx-my+3m-1=0
(1)若此方程表示圆,求实数m的范围.
(2)若直线y=-x+2与(1)中的圆有两个交点A、B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=6,其中O为坐标原点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$),且x∈[0,$\frac{π}{2}$]时,求f(x)的最小值以及取最小值时的x集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如果对数logx+7(x2+6x+5)有意义,求x的取值范围.

查看答案和解析>>

同步练习册答案