【题目】某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元,每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).
(Ⅰ)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;
(Ⅱ)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值;
【答案】(Ⅰ)y=6x2-6x(x∈N*,x>1) (Ⅱ)当10天购买一次,最少费用为714元.
【解析】
试题分析:(1)由题知每次购买的原材料在x天内总的保管费用y1=每公斤每天的保管费用×每天需要消耗原材料×使用的天数可得函数关系式;(2)由(1)表示出购买一次原材料的总的费用,利用基本不等式求出y的最小值及此时的x的值即可
试题解析:(1)∵第一天的保管费a1=(400x-400)×0.03=12x-12;
第二天的保管费a2=12x-24,……,组成一个公差为-12的等差数列,
其中项数为:x-1项,(x∈N*,x>1).
∴y1=(x-1)×12(x-1)+=6x2-6x(x∈N*,x>1)
(2)y=·(y1+600+400x·1.5)=6x++594≥120+594=714(元).
当且仅当6x=,即x=10(天)时取“=”号,
∴当10天购买一次,最少费用为714元.
科目:高中数学 来源: 题型:
【题目】已知两直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0,分别求满足下列条件的a,b值
(1)l1⊥l2,且直线l1过点(﹣3,﹣1);
(2)l1∥l2,且直线l1在两坐标轴上的截距相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知长方形中,为的中点,将 沿折起,使得平面平面.
(1)求证:;
(2)若点是线段上的一动点,问点在何位置时,三棱锥的体积与四棱锥的体积之比为1:3?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题中:
①函数的一个对称中心为;
②若, 为第一象限角,且,则;
③若,则存在实数,使得;
④点是三角形所在平面内一点,且满足,则点是三角形的内心.
其中正确的序号是__________.(把你认为正确的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测验中,有6位同学的平均成绩为75分, 用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)求曲线的直角坐标方程并指出其形状;
(2)设是曲线上的动点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn,且首项a1≠3,an+1=Sn+3n(n∈N*).
(1)求证:数列{Sn-3n}是等比数列;
(2)若{an}为递增数列,求a1的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com