精英家教网 > 高中数学 > 题目详情

如图:在空间四边形ABCD中,AB,BC,BD两两垂直,且AB=BC=2,E是AC的中点,异面直线AD和BE所成的角为,求BD的长度.(15分)

解:建立如图所示的空间直角坐标系,由题意有,E(1,1,0)。
设D(0,0,z),则(1,1,0),=(0,-2,z)


解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知在长方体中,点为棱上任意一点,.

(Ⅰ)求证:平面平面
(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分别为AA1、A1C的中点.

(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形中,平面的中点.

(1)求证:平面
(2)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题満分12分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.

(1)求证AC⊥平面DEF;
(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(3)求平面ABD与平面DEF所成锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,正方体的棱长为,点的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)
如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.
(1)求证:平面EBC;w.w.zxxk.c.o
(2求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

直线的位置关系是(  )

A.平行B.垂直C.相交但不垂直D.不能确定

查看答案和解析>>

同步练习册答案