精英家教网 > 高中数学 > 题目详情

在{an}中,a1=15,3an+1=3an-2(n∈N*),则该数列中相邻两项的乘积为负数的项是        

a23a24


解析:

an+1an=,∴an=15+(n-1)(-)=an+1an<0(45-2n(47-2n)<0<n<.∴n=23.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=an+ln(1+
1
n
),则an=(  )
A、2+lnn
B、2+(n-1)lnn
C、2+nlnn
D、1+n+lnn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数f(n)=
1
n+a1
+
1
n+a2
+
1
n+a3
+…+
1
n+an
(n∈N,且n≥2)
,求函数f(n)的最小值;
(3)设bn=
1
an
Sn
表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,且满足递推关系an+1=
2
a
2
n
+3an+m
an+1
(n∈N*)

(1)当m=1时,求数列{an}的通项an
(2)当n∈N*时,数列{an}满足不等式an+1≥an恒成立,求m的取值范围;
(3)在-3≤m<1时,证明
1
a1+1
+
1
a2+1
+…+
1
an+1
≥1-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=3,且对于任意大于1的正整数n,点(an,an-1)在直线x-y-6=0上,则a3-a5+a7的值(  )

查看答案和解析>>

同步练习册答案