精英家教网 > 高中数学 > 题目详情

【题目】我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+ 中“”即代表无数次重复,但原式却是个定值,它可以通过方程1+ =x求得x= .类比上述过程,则 =(
A.3
B.
C.6
D.2

【答案】A
【解析】解:由已知代数式的求值方法:

先换元,再列方程,解方程,求解(舍去负根),

可得要求的式子.

=m(m>0),

则两边平方得,则3+2 =m2

即3+2m=m2,解得,m=3,m=﹣1舍去.

故选:A

通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上且以4为周期的奇函数,当x∈(0,2)时,f(x)=ln(x2﹣x+b),若函数f(x)在区间[﹣2,2]上的零点个数为5,则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数a,b满足:a+b=2.
(1)求 的最小值m;
(2)设函数f(x)=|x﹣t|+|x+ |(t≠0),对于(Ⅰ)中求得的m,是否存在实数x,使得f(x)=m成立,若存在,求出x的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知D,E是△ABC边BC的三等分点,点P在线段DE上,若 =x +y ,则xy的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ACDF是菱形,∠FAC=60°,AB∥DE,BC∥EF,AB=BC=3,AF=2
(1)求证:平面ABC⊥平面ACDF;
(2)求平面AEF与平面ACE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,∠B1A1A=∠C1A1A=60°,AA1=AC=4,AB=2,P,Q分别为棱AA1 , AC的中点.
(1)在平面ABC内过点A作AM∥平面PQB1交BC于点M,并写出作图步骤,但不要求证明;
(2)若侧面ACC1A1⊥侧面ABB1A1 , 求直线A1C1与平面PQB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数f(x)有最大值M,则M的取值范围是(
A.( ,0)
B.(0, ]
C.(0, ]
D.( ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 (t为参数)恒过椭圆 (φ为参数)在右焦点F.
(1)求m的值;
(2)设直线l与椭圆C交于A,B两点,求|FA||FB|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx+x2+(a﹣1)x﹣a,(a∈R),当x≥1时,f(x)≥0恒成立.
(1)求实数a的取值范围;
(2)若正实数x1、x2(x1≠x2)满足f(x1)+f(x2)=0,证明:x1+x2>2.

查看答案和解析>>

同步练习册答案