精英家教网 > 高中数学 > 题目详情

已知函数f(x)=|x-2|,若a≠0,且a,b∈R,都有不等式|a+b|+|a-b|≥|a|•f(x)成立,则实数x的取值范围是________.

[0,4]
分析:先分离出含有a,b的式子,即(|a+b|+|a-b|)≥f(x)恒成立,问题转化为求左式的最小值即可.
解答:由题知,即(|a+b|+|a-b|)≥f(x)恒成立,
故f(x)小于(|a+b|+|a-b|)的最小值
∵即(|a+b|+|a-b|)≥(|a+b+a-b|)=2
当且仅当(a+b)(a-b)≥0时取等号,
(|a+b|+|a-b|)的最小值等于2.
∴x的范围即为不等式|x-2|≤2的解.
解不等式得0≤x≤4.
故答案为:[0,4].
点评:本题主要考查了不等式的恒成立问题,通常采用分离参数的方法解决,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案