【题目】已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线(A,B为切点),则四边形PACB面积的最小值( )
A. B. C. 2D.
科目:高中数学 来源: 题型:
【题目】图1和图2中所有的正方形都全等,图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是( )
A. B. C. D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )
A. 甲和乙不可能同时获奖 B. 丙和丁不可能同时获奖
C. 乙和丁不可能同时获奖 D. 丁和甲不可能同时获奖
【答案】C
【解析】若甲乙丙同时获奖,则甲丙的话错,乙丁的话对;符合题意;
若甲乙丁同时获奖,则乙的话错,甲丙丁的话对;不合题意;
若甲丙丁同时获奖,则丙丁的话错,甲乙的话对;符合题意;;
若丙乙丁同时获奖,则甲乙丙的话错,丁的话对;不合题意;
因此乙和丁不可能同时获奖,选C.
【题型】单选题
【结束】
12
【题目】已知当时,关于的方程有唯一实数解,则值所在的范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线由两个椭圆:和椭圆:组成,当成等比数列时,称曲线为“猫眼曲线”.若猫眼曲线过点,且的公比为.
(1)求猫眼曲线的方程;
(2)任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;
(3)若斜率为的直线为椭圆的切线,且交椭圆于点,为椭圆上的任意一点(点与点不重合),求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,长轴长为.
(1)求椭圆的方程;
(2)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于直线的直线过椭圆的右焦点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象为C,如下结论中正确的是( )
①图象C关于直线对称;②函数在区间内是增函数;
③图象C关于点对称;④由的图象向右平移个单位长度可以得到图象C
A.①③B.②③C.①②③D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,且不等式对任意的恒成立.
(Ⅰ) 求与的关系;
(Ⅱ) 若数列满足:,,为数列的前项和.求证:;
(Ⅲ) 若在数列中,,为数列的前项和.求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com