精英家教网 > 高中数学 > 题目详情
已知长方体ABCD-A1B1C1D1的顶点都在直径为3的球面上,AA1=AB=2,点E是DD1的中点,则异面直线A1E与B1D所成角的大小为是
 
分析:先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.
解答:精英家教网解:先画出大致图形

先将A1E平移到FD,则∠FDB1是异面直线A1E与B1D所成角,
由题可知B1D=3,B1B=2,得BD=
5
,而AB=2,则AD=1,
计算得FD=
2
,B1F=
5
,B1D=3,
由余弦定理可得cos∠FDB1=
2
2
,即∠FDB1=45°
故答案为45°
点评:本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4,点M是棱D1C1的中点.
(1)试用反证法证明直线AB1与BC1是异面直线;
(2)求直线AB1与平面DA1M所成的角(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,DA=DD1=1,DC=
2
,点E是B1C1的中点,点F在AB上,建立空间直角坐标系如图所示.
(1)求
AE
的坐标及长度;
(2)求点F的坐标,使直线DF与AE的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,M、N分别是BB1和BC的中点,AB=4,AD=2,BB1=2
15
,求异面直线B1D与MN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知长方体ABCD-A1B1C1D1,AB=BC=1,BB1=2,连接B1C,过B点作B1C.
的垂线交CC1于E,交B1C于F.
(I)求证:A1C⊥平面EBD;
(Ⅱ)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1,下列向量的数量积一定不为0的是(  )
精英家教网
A、
AD1
B1C
B、
BD1
AC
C、
AB
AD1
D、
BD1
BC

查看答案和解析>>

同步练习册答案