精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点分别为F1(-c,0),F2(c,0)(c>0),过点E(
a2
c
,0)的直线与椭圆相交于点A,B两点,且F1∥F2B,|F1A|=2|F2B|
(Ⅰ)求椭圆的离心率
(Ⅱ)直线AB的斜率.
分析:(Ⅰ)由AF1∥F2B,|F1A|=2|F2B|,得
a2
c
-c
a2
c
+c
=
1
2
,从而a2=3c2,故可求离心率;(Ⅱ)先设直线AB的方程为y=k(x-
a2
c
)
即y=k(x-3c),再与椭圆的方程2x2+3y2=6c2联立,又由题设知,点B为线段AE的中点,从而可求直线的斜率.
解答:解:(Ⅰ)由AF1∥F2B,|F1A|=2|F2B|,得
a2
c
-c
a2
c
+c
=
1
2
,从而a2=3c2,故离心率e=
3
3

(Ⅱ)由(Ⅰ)知,b2=a2-c2=2c2,所以椭圆的方程可以写为2x2+3y2=6c2
设直线AB的方程为y=k(x-
a2
c
)
即y=k(x-3c)
由已知设A(x1,y1),B(x2,y2),则它们的坐标满足方程组
y=k(x-3c)
2x2+3y2=6c2
 
消去y整理,得(2+3k2)x2-18k2cx+27k2c2-6c2=0
依题意,△>0-
3
3
<k<
3
3
,而x1+x2=
18k2
2+3k2
x1x2=
27k2c2-6c2
2+3k2

由题设知,点B为线段AE的中点,所以x1+3c=2x2
联立三式,解得x1=
9k2c-2c
2+3k2
x2=
9k2c+2c
2+3k2
,,将结果代入韦达定理中解得k=±
2
3
点评:本题主要考查椭圆的离心率及直线的斜率,关键是找出几何量的关系,涉及直线与曲线的位置关系,通常是联立方程,借助于根与系数的关系求解,应注意判别式的验证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案