精英家教网 > 高中数学 > 题目详情
2.已知抛物线y=a(x-1)2+h(a≠0)与x轴交于A(x1,0)、B(4,0)两点,则x1为(  )
A.-2B.-1C.0D.1

分析 根据抛物线的顶点式方程知对称轴x=1=$\frac{{x}_{1}+4}{2}$,据此可以求得x1的值.

解答 解:∵抛物线的解析式是:y=a(x-1)2+h(a≠0),
∴该抛物线的对称轴x=1.
又∵抛物线y=a(x-1)2+h(a≠0)与x轴交于A(x1,0)、B(4,0)两点,
∴1=$\frac{{x}_{1}+4}{2}$,
解得,x1=-2.
故选:A.

点评 本题考查了抛物线与x轴的交点.解答该题的技巧在于利用对称轴方程的定义和顶点式解析式的y=a(x-1)2+h(a≠0)的顶点(1,h)来求x1的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知x与y之间的一组数据:
x0123
y1357
则y与x的线性回归方程$\hat y$=bx+a必过(  )
A.(2,2)B.(1.5,3.5)C.(1,2)D.(1.5,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某种产品的两种原料相继提价,因此,产品生产者决定根据这两种原料提价的百分比,对产品分两次提价,现在有三种提价方案:
方案甲:第一次提价p%,第二次提价q%;
方案乙:第一次提价q%,第二次提价p%;
方案丙:第一次提价$\frac{p+q}{2}$%,第二次提价$\frac{p+q}{2}$%.
其中p>q>0,比较上述三种方案,哪一种提价少?哪一钟提价多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式
(1)-2x2>3x-9
(2)x(9-x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为2,则原梯形的面积为(  )
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).
(1)求直线和抛物线所表示的函数表达式;
(2)在抛物线上是否存在一点D,使得S△OAD=S△OBC,若不存在,说明理由;若存在,请求出点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}\right.$  则x2+y2的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a,b,c为正数且各不相等,求证:$\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}$>$\frac{9}{a+b+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)满足f(1)=2,f(x+1)=$\frac{1+f(x)}{1-f(x)}$,则f(3)的值为$-\frac{1}{2}$,f(1)•f(2)•f(3)…f(2007)的值为3.

查看答案和解析>>

同步练习册答案