精英家教网 > 高中数学 > 题目详情

【题目】函数满足,当时,,(过点且斜率为的直线与在区间上的图象恰好有3个交点,则的取值范围为__.

【答案】

【解析】

根据函数的奇偶性及函数的图象的对称性,可求出函数在上的解析式,作出函数图象,由数形结合可知直线的斜率满足时,直线与函数有3个交点,利用导数及斜率公式可求出,即可求解.

时,,以及可知,

时,

又由,可知函数图象关于直线对称,

故当时,

时,

同理可知,当时,

又直线恒过点

故其方程为,即

做出函数时的函数图象和

由图象可知,适合题意的的范围是

设直线和函数在上相切于点

将②代入③,得到

再将①代入④得到,

解得,故,舍去负值.

代入①,得到

又由题可知点,代入直线

得到

故适合题意的的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若的极大值点,求的取值范围;

(2)当时,方程(其中)有唯一实数解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆柱的轴截面是边长为2的正方形,点P是圆弧上的一动点(不与重合),点Q是圆弧的中点,且点在平面的两侧.

1)证明:平面平面

2)设点P在平面上的射影为点O,点分别是的重心,当三棱锥体积最大时,回答下列问题.

i)证明:平面

ii)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点P的轨迹对应曲线C的标准方程;

2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述正确的是(

A.命题pq为真,则恰有一个为真命题

B.命题已知,则的充分不必要条件

C.命题都有,则,使得

D.如果函数在区间上是连续不断的一条曲线,并且有,那么函数在区间内有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意xR,存在函数fx)满足(

A.fcosx)=sin2xB.fsin2x)=sinx

C.fsinx)=sin2xD.fsinx)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②上是增函数或者减函数.

1)若在区间上是闭函数,求常数的值;

2)找出所有形如的函数(都是常数),使其在区间上是闭函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴为正半轴为极轴建立极坐标系.已知曲线的极坐标方程为 ,直线与曲线相交于两点,直线过定点且倾斜角为交曲线两点.

(1)把曲线化成直角坐标方程,并求的值;

(2)若成等比数列,求直线的倾斜角.

查看答案和解析>>

同步练习册答案