【题目】函数满足,,当,时,,(过点且斜率为的直线与在区间,上的图象恰好有3个交点,则的取值范围为__.
科目:高中数学 来源: 题型:
【题目】如图,圆柱的轴截面是边长为2的正方形,点P是圆弧上的一动点(不与重合),点Q是圆弧的中点,且点在平面的两侧.
(1)证明:平面平面;
(2)设点P在平面上的射影为点O,点分别是和的重心,当三棱锥体积最大时,回答下列问题.
(i)证明:平面;
(ii)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点分别在轴和轴上运动,且,若动点满足.
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述正确的是( )
A.命题“p且q”为真,则恰有一个为真命题
B.命题“已知,则“”是“”的充分不必要条件”
C.命题都有,则,使得
D.如果函数在区间上是连续不断的一条曲线,并且有,那么函数在区间内有零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意x∈R,存在函数f(x)满足( )
A.f(cosx)=sin2xB.f(sin2x)=sinx
C.f(sinx)=sin2xD.f(sinx)=cos2x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.
(1)若在区间上是闭函数,求常数的值;
(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以为极点,轴为正半轴为极轴建立极坐标系.已知曲线的极坐标方程为 ,直线与曲线相交于两点,直线过定点且倾斜角为交曲线于两点.
(1)把曲线化成直角坐标方程,并求的值;
(2)若成等比数列,求直线的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com