精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,则函数 的零点个数是( )
A.4
B.5
C.6
D.7

【答案】A
【解析】

t=f(x),F(x)=0,则f(t)2t =0,分别作出y=f(x)和直线y=2x+ ,由图象可得有两个交点,横坐标设为t1,t2,则t1=0,1<t2<2,

即有f(x)=0有一根;1<f(x)<2时,t2=f(x)有3个不等实根,综上可得F(x)=0的实根个数为4,即函数F(x)=f[f(x)]2f(x) 的零点个数是4.

所以答案是:A


【考点精析】解答此题的关键在于理解函数的零点与方程根的关系的相关知识,掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义“三角恋写法”为“三个人之间写信,每人给另外两人之一写一封信,且任意两个人不会彼此给对方写信”,若五个人a,b,c,d,e中的每个人都恰给其余四人中的某一个人写了一封信,则不出现“三角恋写法”写法的写信情况的种数为(
A.704
B.864
C.1004
D.1014

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈[﹣1,0],θ∈[0,2π),二元函数 取最小值时,x=x0 , θ=θ0则(
A.4x00=0
B.4x00<0
C.4x00>0
D.以上均有可能.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为的中点,点为线段上的一点,将沿折起到的位置,使,如图2.

(1)求证:

(2)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[﹣2,2]上任意两个自变量的值x1 , x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;
(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂商为了解用户对其产品是否满意,在使用产品的用户中随机调查了80人,结果如下表:

(1)根据上述,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;
(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,求 的最大值;
(2)若 恒成立,求实数 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设U=R,A={x|x≤2,或x≥5},B= ,C={x|a<x<a+1}
(1)求A∪B和(UA)∩B
(2)若B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________

查看答案和解析>>

同步练习册答案