【题目】已知数列的前项和为,且满足.
(1)求证:数列为等比数列;
(2)若,求的前项和.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)利用,化简得,故是等比数列;(2)由于,相等于一个等差数列乘以一个等比数列,所以考虑用错位相减求和法求前项和为.
试题解析:
(1)当时,,解得;...............1分
当时,,两式相减得,................3分
化简得,所以数列是首项为1,公比为-1的等比数列..........5分
(2)由(1)可得,所以,下提供三种求和方法供参考:.......6分
【错位相减法】,
....................8分
两式相减得................9分
....................10分
,....................11分
所以数列的前项和.........................12分
【并项求和法】/p>
当为偶数时,;........................9分
当为奇数时,为偶数,;............11分
综上,数列的前项和.........................12分
【裂项相消法】
因为..............9分
所以
,
所以数列的前项和..................12分
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段, …后画出如下频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂第一季度某产品月生产量依次为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量(单位:万件)与月份的关系. 模拟函数;模拟函数.
(1)已知4月份的产量为万件,问选用哪个函数作为模拟函数好?
(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图,在五棱锥中,,且.
(1)已知点在线段上,确定的位置,使得;
(2)点分别在线段上,若沿直线将四边形向上翻折,与恰好重合,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的年销售量与该年广告费用支出有关,现收集了4组观测数据列于下表:
(万元) | 1 | 4 | 5 | 6 |
(万元) | 30 | 40 | 60 | 50 |
现确定以广告费用支出为解释变量,销售量为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立与之间的回归方程;
(2)假如2017年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量.
(线性回归方程系数公式).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间为了制作某个零件,需从一块扇形的钢板余料(如图1)中按照图2的方式裁剪一块矩形钢板,其中顶点、在半径上,顶点在半径上,顶点在上, , .设,矩形的面积为.
(1)用含的式子表示, 的长;
(2)试将表示为的函数;
(3)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且,
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆满足:①圆心在第一象限,截轴所得弦长为2;②被轴分成两段圆弧,其弧长的比为;③圆心到直线的距离为.
(Ⅰ)求圆的方程;
(Ⅱ)若点是直线上的动点,过点分别做圆的两条切线,切点分别为, ,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,椭圆:()的离心率是,抛物线:的焦点是的一个顶点.
(1)求椭圆的方程;
(2)设是上的动点,且位于第一象限,在点处的切线与交于不同的两点,,线段的中点为,直线与过且垂直于轴的直线交于点.
(i)求证:点在定直线上;
(ii)直线与轴交于点,记△的面积为,△的面积为,求的最大值及取得最大值时点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com