精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ln(1+x2)+ax.(a≤0)
(1)若f(x)在x=0处取得极值,求a的值;
(2)讨论f(x)的单调性;
(3)证明:(1+ )(1+ )…(1+ )< (n∈N* , e为自然对数的底数).

【答案】
(1)解:∵ ,∵x=0使f(x)的一个极值点,则f'(0)=0,

∴a=0,验证知a=0符合条件


(2)解:∵

①若a=0时,∴f(x)在(0,+∞)单调递增,在(﹣∞,0)单调递减;

②若 得,当a≤﹣1时,f'(x)≤0对x∈R恒成立,

∴f(x)在R上单调递减.

③若﹣1<a<0时,由f'(x)>0得ax2+2x+a>0

再令f'(x)<0,可得

上单调递增,

综上所述,若a≤﹣1时,f(x)在(﹣∞,+∞)上单调递减;

若﹣1<a<0时, 上单调递增 上单调递减;

若a=0时,f(x)在(0,+∞)单调递增,在(﹣∞,0)单调递减


(3)解:由(2)知,当a=﹣1时,f(x)在(﹣∞,+∞)单调递减

当x∈(0,+∞)时,由f(x)<f(0)=0

∴ln(1+x2)<x,∴ln[(1+ )(1+ )…(1+ )]=ln(1+ )+ln(1+ )+…+ln(1+

+ +…+ = = (1﹣ )< ,∴(1+ )(1+ )…(1+ )< =


【解析】(1)求出f′(x),因为f(x)在x=0时取得极值,所以f'(0)=0,代入求出a即可;(2)分三种情况:a=0;a≤﹣1;﹣1<a<0,令f′(x)>0得到函数的递增区间;令f′(x)<0得到函数的递减区间即可;(3)由(2)知当a=﹣1时函数为减函数,所以得到ln(1+x2)<x,利用这个结论根据对数的运算法则化简不等式的左边得证即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.

(1)求椭圆的方程;

(2)设直线过椭圆的左端点A与椭圆的另一个交点为B.,AB的垂直平分线交轴于点,且·=4,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax-lnx,a∈R.

(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;

(2)是否存在实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若f(﹣1)=﹣3,求a

(2)若f(x)的定义域为R,求a的取值范围;

(3)是否存在实数a,使f(x)在(﹣∞,2)上为增函数?若存在,求出a的范围?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求方程 x2+2x=5(x>0)的近似解(精确度 0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为 ,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为 ,A,B两点的极坐标分别为
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)点P是圆C上任一点,求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列{an},a1=1,a2=2,对任意n∈N* , 有an+2=an , 数列{bn}满足bn+1﹣bn=an(n∈N*),若数列 中的任意一项都在该数列中重复出现无数次,则满足要求的b1的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1).

(1)求a,b的值;

(2)求f(log2x)的最小值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P在正方体ABCD﹣A1B1C1D1的表面上运动,且P到直线BC与直线C1D1的距离相等,如果将正方体在平面内展开,那么动点P的轨迹在展开图中的形状是(

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案