精英家教网 > 高中数学 > 题目详情

【题目】已知函数(为实常数)

1)当时,作出的图象,并写出它的单调递增区间;

2)设在区间的最小值为,求的表达式;

3)已知函数的情况下:其在区间单调递减,在区间单调递增.,若函数在区间上是增函数,求实数的取值范围.

【答案】(1)图象见解析;单调递增区间;(2);(3)

【解析】

1)将二次函数图象在轴下方的部分沿轴翻折到轴上方即可得到所求函数的图象,结合图象可写出单调递增区间;

2)根据二次函数对称轴为,分别讨论三种情况,结合二次函数性质可得到三种情况下的最小值,进而得到

(3)当时,可知为增函数,满足题意;当时,由已知所给函数的单调性可得单调性,进而构造不等式求得的范围;综合两种情况可得最终结果.

1)当时,,则图象如下图所示:

由图象可知:的单调递增区间为

(2)当,即时,

,即时,

,即时,

综上所述:

(3)由题意得:

,即时,上单调递增,符合题意;

,即时,单调递减,在单调递增

,解得:

综上所述:实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数对任意,都有,且时,.

(1)求证是奇函数;

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线,直线.

(1)求曲线和直线的直角坐标方程;

(2)设点的直角坐标为,直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的等比数列满足,,若函数的导函数为, ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是一种反映和评价空气质量的方法,AQI指数与空气质量对应如表所示:

AQI

0~50

51~100

101~150

151~200

201~300

300以上

空气质量

轻度污染

中度污染

重度污染

严重污染

如图是某城市2018年12月全月的AQI指数变化统计图:

根据统计图判断,下列结论正确的是(  )

A. 整体上看,这个月的空气质量越来越差

B. 整体上看,前半月的空气质量好于后半个月的空气质量

C. 从AQI数据看,前半月的方差大于后半月的方差

D. 从AQI数据看,前半月的平均值小于后半月的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是由矩形和菱形组成的一个平面图形,其中,将其沿折起使得重合,连结,如图2.

(1)证明图2中的四点共面,且平面平面

(2)求图2中的四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数ab定义运算“*”:a*b,f (x)=(x-4)*若关于x的方程|f (x)-m|=1(mR)恰有四个互不相等的实数根则实数m的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位长度后得到函数的图象在区间上单调递增,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二手车经销商小王对其所经营的型号二手汽车的使用年数与销售价格(单位:万元/辆)进行整理,得到如下数据:

使用年数

售价

下面是关于的折线图:

1)由折线图可以看出,可以用线性回归模型拟合的关系,请用相关系数加以说明;

2)求关于的回归方程并预测某辆型号二手车当使用年数为年时售价约为多少?(小数点后保留两位有效数字)

3)基于成本的考虑,该型号二手车的售价不得低于元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?

参考数据:

.

参考公式:回归直线方程中斜率和截距的最小二乘估计公式分别为:

.

为样本平均值.

查看答案和解析>>

同步练习册答案