精英家教网 > 高中数学 > 题目详情

【题目】已知为等差数列,为等比数列,

(Ⅰ)求的通项公式;

(Ⅱ)记的前项和为,求证:

(Ⅲ)对任意的正整数,设求数列的前项和.

【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ).

【解析】

(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;

(Ⅱ)利用(Ⅰ)的结论首先求得数列n项和,然后利用作差法证明即可;

(Ⅲ)分类讨论n为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算的值,据此进一步计算数列的前2n项和即可.

()设等差数列的公差为,等比数列的公比为q.

,可得d=1.

从而的通项公式为.

q≠0,可得,解得q=2

从而的通项公式为.

()证明:由()可得

从而

所以.

()n为奇数时,

n为偶数时,

对任意的正整数n,有

由①得

由①②得

由于

从而得:.

因此,.

所以,数列的前2n项和为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市对一项惠民市政工程满意程度(分值:分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):

现用分层抽样的方法从所有参与网上投票的市民中随机抽取位市民召开座谈会,其中满意程度在的有5人.

1)求的值,并填写下表(2000位参与投票分数和人数分布统计);

满意程度(分数)

人数

2)求市民投票满意程度的平均分(各分数段取中点值);

3)若满意程度在5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】CES是世界上最大的消费电子技术展,也是全球最大的消费技术产业盛会.2020CES消费电子展于202017日—10日在美国拉斯维加斯举办.在这次CES消费电子展上,我国某企业发布了全球首款彩色水墨屏阅读手机,惊艳了全场.若该公司从7名员工中选出3名员工负责接待工作(3名员工的工作视为相同的工作),再选出2名员工分别在上午、下午讲解该款手机性能,若其中甲和乙至多有1人负责接待工作,则不同的安排方案共有__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为.为线段上一点,,有下列条件:

;②;③.

请从以上三个条件中任选两个,求的大小和的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项a1=1,前n项和为Sn.设λk是常数,若对一切正整数n,均有成立,则称此数列为“λ~k数列.

1)若等差数列“λ~1”数列,求λ的值;

2)若数列数列,且an0,求数列的通项公式;

3)对于给定的λ,是否存在三个不同的数列“λ~3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在等腰梯形中,.,交于点.沿线段折起,使得点在平面内的投影恰好是点,如图.

1)若点为棱上任意一点,证明:平面平面.

2)在棱上是否存在一点,使得三棱锥的体积为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,,且的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是抛物线上的两个不同的点,是坐标原点,若直线的斜率之积为,则下列结论正确的是(

A.

B.为直径的圆面积的最小值为

C.直线过抛物线的焦点

D.到直线的距离不大于

查看答案和解析>>

同步练习册答案