【题目】若函数在处有极值,且,则称为函数的“F点”.
(1)设函数().
①当时,求函数的极值;
②若函数存在“F点”,求k的值;
(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.
【答案】(1)①极小值为1,无极大值.②实数k的值为1.(2)
【解析】
(1)①将代入可得,求导讨论函数单调性,即得极值;②设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.
解:(1)①当时, (),
则有(),令得,
列表如下:
x | 1 | ||
0 | |||
极小值 |
故函数在处取得极小值,极小值为1,无极大值.
②设是函数的一个“F点”().
(),是函数的零点.
,由,得,,
由,得,即.
设,则,
所以函数在上单调增,注意到,
所以方程存在唯一实根1,所以,得,
根据①知,时,是函数的极小值点,
所以1是函数的“F点”.
综上,得实数k的值为1.
(2)由(a,b,,),
可得().
又函数存在不相等的两个“F点”和,
,是关于x的方程()的两个相异实数根.
又,,
,即,
从而
,,
即..
,
,
解得.所以,实数a的取值范围为.
(2)(解法2)因为( a,b,,)
所以().
又因为函数存在不相等的两个“F点”和,
所以,是关于x的方程组的两个相异实数根.
由得,.
(2.1)当是函数一个“F点”时,且.
所以,即.
又,
所以,所以.又,所以.
(2.2)当不是函数一个“F点”时,
则,是关于x的方程的两个相异实数根.
又,所以得所以,得.
所以,得.
综合(2.1)(2.2),实数a的取值范围为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到距离的最大值及该点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们称n()元有序实数组(,,…,)为n维向量,为该向量的范数.已知n维向量,其中,,2,…,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.
(1)求和的值;
(2)当n为偶数时,求,(用n表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.
(1)求椭圆的标准方程;
(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两动圆和(),把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,且曲线上的相异两点满足:.
(1)求曲线的轨迹方程;
(2)证明直线恒经过一定点,并求此定点的坐标;
(3)求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com