【题目】已知在平面直角坐标系中,椭圆C的参数方程为 (θ为参数).
(I)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(Ⅱ)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.
科目:高中数学 来源: 题型:
【题目】如图1,已知矩形ABCD中, ,点E是边BC上的点,且 ,DE与AC相交于点H.现将△ACD沿AC折起,如图2,点D的位置记为D',此时 .
(Ⅰ)求证:D'H⊥平面ABC;
(Ⅱ)求二面角H﹣D'E﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取20%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为( )
A.100,8
B.80,20
C.100,20
D.80,8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x+ax2+bcosx在点 处的切线方程为 .
(Ⅰ)求a,b的值,并讨论f(x)在 上的增减性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求证: .
(参考公式: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2sin Acos B=2sin C﹣sin B.
(I)求角A;
(Ⅱ)若a=4 ,b+c=8,求△ABC 的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(1,0),若点B是曲线y=f(x)上的点,且线段AB的中点在曲线y=g(x)上,则称点B是函数y=f(x)关于函数g(x)的一个“关联点”,已知f(x)=|log2x|,g(x)=( )x , 则函数f(x)关于函数g(x)的“关联点”的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足nan+2﹣(n+2)an=λ(n2+2n),其中a1=1,a2=2,若an<an+1对n∈N*恒成立,则实数λ的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+ )(ω>0)的周期为π,则下列选项正确的是( )
A.函数f(x)的图象关于点( ,0)对称
B.函数f(x)的图象关于点(﹣ ,0)对称
C.函数f(x)的图象关于直线x= 对称
D.函数f(x)的图象关于直线x=﹣ 对称
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com