精英家教网 > 高中数学 > 题目详情
(2014•广东模拟)如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.
(1)证明:AC⊥DE;
(2)若PC=
2
BC,求二面角E-AC-P的余弦值.
分析:(1)由线面垂直的定义,得到PD⊥AC,在正方形ABCD中,证出BD⊥AC,根据线面垂直判定定理证出AC⊥平面PBD,从而得到AC⊥DE;
(2)建立空间直角坐标系,如图所示.得D、A、C、P、E的坐标,从而得到
CA
CP
CE
的坐标,利用垂直向量数量积为零的方法,建立方程组解出
u
=(1,1,1)是平面ACP的一个法向量,
v
=(-1,1,1)是平面ACE的一个法向量,利用空间向量的夹角公式即可算出二面角E-AC-P的余弦值.
解答:解:(1)∵PD⊥平面ABCD,AC?平面ABCD
∴PD⊥AC
∵底面ABCD是正方形,∴BD⊥AC,
∵PD、BD是平面PBD内的相交直线,∴AC⊥平面PBD
∵DE?平面PBD,∴AC⊥BD
(2)分别以DP、DA、DC所在直线为x、y、z轴,建立空间直角坐标系,如图所示
设BC=3,则CP=3
2
,DP=3,结合2BE=EP可得
D(0,0,0),A(0,3,0),C(0,0,3),P(3,0,0),
E(1,2,2)
CA
=(0,3,-3),
CP
=(3,0,-3),
CE
=(1,2,-1)
设平面ACP的一个法向量为
u
=(x,y,z),可得
u
CA
=3y-3z=0
u
CP
=3x-3z=0
,取x=1得
u
=(1,1,1)
同理求得平面ACE的一个法向量为
v
=(-1,1,1)
∵cos<
u
v
>=
u
v
|u|
|v|
=
1
3
,∴二面角E-AC-P的余弦值等于
1
3
点评:本题在特殊四棱锥中求证线面垂直,并求二面角的大小.着重考查了空间线面垂直的定义与判定、空间向量的夹角公式和利用空间坐标系研究二面角的大小等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2014•广东模拟)为了更好的开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”,“街舞”,“动漫”,“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表(单位:人)
社团 相关人数 抽取人数
模拟联合国 24 a
街舞 18 3
动漫 b 4
话剧 12 c
(1)求a,b,c的值;
(2)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•广东模拟)已知x,y满足约束条件
x-y+5≥0
x+y≥0
x≤3
,则z=2x+4y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•广东模拟)已知集合M={0,1,2,3,4},N={-2,0,2},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•广东模拟)下列函数中,既是奇函数又是减函数的是(  )

查看答案和解析>>

同步练习册答案