精英家教网 > 高中数学 > 题目详情

【题目】已知D是直角ABC斜边BC上一点,AC= DC,
(Ⅰ)若∠DAC=30°求角B的大小;
(Ⅱ)若BD=2DC,且 AD=2 ,求DC的长.

【答案】解:(Ⅰ)在△ADC中,根据正弦定理,有

∵AC= DC,

∴sin∠ADC= sin∠DAC=

又∠ADC=∠B+∠BAD=∠B+60°>60°

∴∠ADC=120°

于是∠C=180°﹣120°﹣30°,

∴∠B=60°

(Ⅱ)∵BD=2DC,且 AD=2

设DC=x,则BD=2x,BC= x,AC= x

于是sinB=

在△ABD中,由余弦定理得:AD2=AB2+BD2﹣2ABBD cos B,

即(2 2=6x2+4x2﹣2x x2x× 2

解得:x=2

故DC=2.


【解析】(1)由正弦定理得出角的关系,经分析可得出角B的大小;(2)根据比例,设出相应线段的长度,再由正余弦定理解出x,得到DC=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA=PB,PA⊥PB,AB⊥BC,且平面PAB⊥平面ABCD,若AB=2,BC=1,

(1)求证:PA⊥平面PBC;
(2)若点M在棱PB上,且PM:MB=3,求证CM∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,平面PAC⊥底面ABCD,BC=CD= AC=2,∠ACB=∠ACD=

(1)证明:AP⊥BD;
(2)若AP= ,AP与BC所成角的余弦值为 ,求二面角A﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四面体ABCD中,M是棱AD的中点,O是点A在底面BCD内的射影,则异面直线BM与AO所成角的余弦值为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}中的a2、a4032是函数 的两个极值点,则log2(a2a2017a4032)=(  )
A.
B.4
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中.以原点为极点,x轴的正半轴为极轴建立极坐标系已知曲线C:pcos2θ=2asinθ(a>0)过点P(﹣4,﹣2)的直线l的参数方程为 (t为参数)直线l与曲线C分别交于点M,N.
(1)写出C的直角坐标方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点F是抛物线τ:x2=2py (p>0)的焦点,点A是抛物线上的定点,且 =(2,0),点B,C是抛物线上的动点,直线AB,AC斜率分别为k1 , k2

(I)求抛物线τ的方程;
(Ⅱ)若k1﹣k2=2,点D是点B,C处切线的交点,记△BCD的面积为S,证明S为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为矩形,M是AD上一点.

(1)求证:AB⊥PM;
(2)若N是PB的中点,且AN∥平面PCM,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)证明:k∈R,直线y=g(x)都不是曲线y=f(x)的切线;
(2)若x∈[e,e2],使得f(x)≤g(x)+ 成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案