·ÖÎö £¨1£©ÓÉÓÚÊýÁÐ{bn}Êǵȷ½²îÊýÁУ¬b1=1£¬b2=3£¬¿ÉµÃk=32-12=8£¬${b}_{3}^{2}$=1+£¨3-1£©¡Á8£¬Í¬Àí¿ÉµÃ${b}_{4}^{2}$£®¼´¿ÉµÃ³ö£®
£¨2£©Óɵȷ½²îÊýÁÐ{an}Âú×ãa1=2£¬a2=2$\sqrt{2}$£¬an£¾0£¬¿ÉµÃk=${a}_{2}^{2}-{a}_{1}^{2}$=4£®ÀûÓÃ${a}_{n}^{2}$=${a}_{1}^{2}$+£¨n-1£©k¿ÉµÃan=2$\sqrt{n}$£®ÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°nÏîºÍΪTn=$\frac{1}{2}£¨1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+¡+\frac{1}{\sqrt{n}}£©$£®¼ÙÉè´æÔÚÕýÕûÊýp£¬q£¬Ê¹²»µÈʽTn£¾$\sqrt{pn+q}$-1¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò$\frac{1}{2}£¨1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+¡+\frac{1}{\sqrt{n}}£©$£¾$\sqrt{pn+q}$-1£®¼´$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡+$\frac{1}{\sqrt{n}}$£¾2£¨$\sqrt{pn+q}$-1£©£®µ±n=1ʱ£¬1£¾2$£¨\sqrt{p+q}-1£©$£¬»¯Îªp+q£¼$\frac{9}{4}$£¬ÓÖp£¬qΪÕýÕûÊý£¬p=q=1£®ÏÂÃæÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡+$\frac{1}{\sqrt{n}}$£¾2$£¨\sqrt{n+1}-1£©$¼´¿É£®
½â´ð ½â£º£¨1£©¡ßÊýÁÐ{bn}Êǵȷ½²îÊýÁУ¬b1=1£¬b2=3£¬
¡àk=32-12=8£¬
¡à${b}_{3}^{2}$=1+£¨3-1£©¡Á8=17£¬${b}_{4}^{2}$=1+£¨4-1£©¡Á8=25£¬
¡àb3=$¡À\sqrt{17}$£¬b4=¡À5£®
¡àËùÓÐÂú×ãÌõ¼þµÄÊýÁÐ{bn}µÄÇ°4Ï1£¬3£¬$\sqrt{17}$£¬5£»1£¬3£¬$\sqrt{17}$£¬-5£»1£¬3£¬-$\sqrt{17}$£¬5£»1£¬3£¬-$\sqrt{17}$£¬-5£®
£¨2£©¡ßµÈ·½²îÊýÁÐ{an}Âú×ãa1=2£¬a2=2$\sqrt{2}$£¬an£¾0£¬¡àk=${a}_{2}^{2}-{a}_{1}^{2}$=8-4=4£®
¡à${a}_{n}^{2}$=${a}_{1}^{2}$+£¨n-1£©k=4+4£¨n-1£©=4n£¬¡àan=2$\sqrt{n}$£®
¡àÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°nÏîºÍΪTn=$\frac{1}{2}£¨1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+¡+\frac{1}{\sqrt{n}}£©$£®
¼ÙÉè´æÔÚÕýÕûÊýp£¬q£¬Ê¹²»µÈʽTn£¾$\sqrt{pn+q}$-1¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£®
Ôò$\frac{1}{2}£¨1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+¡+\frac{1}{\sqrt{n}}£©$£¾$\sqrt{pn+q}$-1£®¼´$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡+$\frac{1}{\sqrt{n}}$£¾2£¨$\sqrt{pn+q}$-1£©£®
µ±n=1ʱ£¬1£¾2$£¨\sqrt{p+q}-1£©$£¬»¯Îªp+q£¼$\frac{9}{4}$£¬ÓÖp£¬qΪÕýÕûÊý£¬¡àp=q=1£®
ÏÂÃæÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡+$\frac{1}{\sqrt{n}}$£¾2$£¨\sqrt{n+1}-1£©$£®
¢Ùµ±n=1ʱ£¬2$£¨\sqrt{2}-1£©$=$\frac{2}{\sqrt{2}+1}$£¼1£¬¡à²»µÈʽ³ÉÁ¢£®
¢Ú¼ÙÉèµ±n=k£¨k¡Ý1£©Ê±£¬$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡+$\frac{1}{\sqrt{k}}$£¾2$£¨\sqrt{k+1}-1£©$£®
Ôòµ±n=k+1ʱ£¬$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡+$\frac{1}{\sqrt{k}}$+$\frac{1}{\sqrt{k+1}}$£¾2$£¨\sqrt{k+1}-1£©$+$\frac{1}{\sqrt{k+1}}$£¾2$£¨\sqrt{k+1}-1£©$+$\frac{2}{\sqrt{k+1}+\sqrt{k+1}}$£¾2$£¨\sqrt{k+1}-1£©$+$\frac{2}{\sqrt{k+2}+\sqrt{k+1}}$£¾2$£¨\sqrt{k+1}-1£©$+2$£¨\sqrt{k+2}-\sqrt{k+1}£©$=2$£¨\sqrt{k+2}-1£©$£¬¼´$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡+$\frac{1}{\sqrt{k}}$+$\frac{1}{\sqrt{k+1}}$£¾2$£¨\sqrt{k+2}-1£©$£¬
¡àµ±n=k+1ʱ£¬³ÉÁ¢£®
×ÛÉϿɵãº?n¡ÊN*£¬$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡+$\frac{1}{\sqrt{n}}$£¾2$£¨\sqrt{n+1}-1£©$³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éÁËж¨Òå¡°µÈ·½²îÊýÁС±¡¢Êýѧ¹éÄÉ·¨¡¢²»µÈʽµÄÐÔÖÊ¡¢µÝÍƹØϵµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{2}{3}$ | B£® | $\frac{7}{3}$ | C£® | $\frac{5}{3}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 930 | B£® | 1520 | C£® | 60 | D£® | 61 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨-¡Þ£¬0£© | B£® | £¨0£¬4£© | C£® | £¨4£¬+¡Þ£© | D£® | £¨-¡Þ£¬0£©¡È£¨4£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com