12£®ÔÚÊýÁÐ{an}£¬Èôa${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=k£¨n¡Ý2£¬n¡ÊN*£¬kΪ³£Êý£©£¬Ôò³Æ{an}ΪµÈ·½²îÊýÁУ®
£¨1£©ÈôÊýÁÐ{bn}Êǵȷ½²îÊýÁУ¬b1=1£¬b2=3£¬Ð´³öËùÓÐÂú×ãÌõ¼þµÄÊýÁÐ{bn}µÄÇ°4Ï
£¨2£©ÈôµÈ·½²îÊýÁÐ{an}Âú×ãa1=2£¬a2=2$\sqrt{2}$£¬an£¾0£¬ÉèÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°nÏîºÍΪTn£¬ÊÇ·ñ´æÔÚÕýÕûÊýp£¬q£¬Ê¹²»µÈʽTn£¾$\sqrt{pn+q}$-1¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öp£¬qµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÓÚÊýÁÐ{bn}Êǵȷ½²îÊýÁУ¬b1=1£¬b2=3£¬¿ÉµÃk=32-12=8£¬${b}_{3}^{2}$=1+£¨3-1£©¡Á8£¬Í¬Àí¿ÉµÃ${b}_{4}^{2}$£®¼´¿ÉµÃ³ö£®
£¨2£©Óɵȷ½²îÊýÁÐ{an}Âú×ãa1=2£¬a2=2$\sqrt{2}$£¬an£¾0£¬¿ÉµÃk=${a}_{2}^{2}-{a}_{1}^{2}$=4£®ÀûÓÃ${a}_{n}^{2}$=${a}_{1}^{2}$+£¨n-1£©k¿ÉµÃan=2$\sqrt{n}$£®ÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°nÏîºÍΪTn=$\frac{1}{2}£¨1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+¡­+\frac{1}{\sqrt{n}}£©$£®¼ÙÉè´æÔÚÕýÕûÊýp£¬q£¬Ê¹²»µÈʽTn£¾$\sqrt{pn+q}$-1¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò$\frac{1}{2}£¨1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+¡­+\frac{1}{\sqrt{n}}£©$£¾$\sqrt{pn+q}$-1£®¼´$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡­+$\frac{1}{\sqrt{n}}$£¾2£¨$\sqrt{pn+q}$-1£©£®µ±n=1ʱ£¬1£¾2$£¨\sqrt{p+q}-1£©$£¬»¯Îªp+q£¼$\frac{9}{4}$£¬ÓÖp£¬qΪÕýÕûÊý£¬p=q=1£®ÏÂÃæÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡­+$\frac{1}{\sqrt{n}}$£¾2$£¨\sqrt{n+1}-1£©$¼´¿É£®

½â´ð ½â£º£¨1£©¡ßÊýÁÐ{bn}Êǵȷ½²îÊýÁУ¬b1=1£¬b2=3£¬
¡àk=32-12=8£¬
¡à${b}_{3}^{2}$=1+£¨3-1£©¡Á8=17£¬${b}_{4}^{2}$=1+£¨4-1£©¡Á8=25£¬
¡àb3=$¡À\sqrt{17}$£¬b4=¡À5£®
¡àËùÓÐÂú×ãÌõ¼þµÄÊýÁÐ{bn}µÄÇ°4Ï1£¬3£¬$\sqrt{17}$£¬5£»1£¬3£¬$\sqrt{17}$£¬-5£»1£¬3£¬-$\sqrt{17}$£¬5£»1£¬3£¬-$\sqrt{17}$£¬-5£®
£¨2£©¡ßµÈ·½²îÊýÁÐ{an}Âú×ãa1=2£¬a2=2$\sqrt{2}$£¬an£¾0£¬¡àk=${a}_{2}^{2}-{a}_{1}^{2}$=8-4=4£®
¡à${a}_{n}^{2}$=${a}_{1}^{2}$+£¨n-1£©k=4+4£¨n-1£©=4n£¬¡àan=2$\sqrt{n}$£®
¡àÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°nÏîºÍΪTn=$\frac{1}{2}£¨1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+¡­+\frac{1}{\sqrt{n}}£©$£®
¼ÙÉè´æÔÚÕýÕûÊýp£¬q£¬Ê¹²»µÈʽTn£¾$\sqrt{pn+q}$-1¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£®
Ôò$\frac{1}{2}£¨1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+¡­+\frac{1}{\sqrt{n}}£©$£¾$\sqrt{pn+q}$-1£®¼´$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡­+$\frac{1}{\sqrt{n}}$£¾2£¨$\sqrt{pn+q}$-1£©£®
µ±n=1ʱ£¬1£¾2$£¨\sqrt{p+q}-1£©$£¬»¯Îªp+q£¼$\frac{9}{4}$£¬ÓÖp£¬qΪÕýÕûÊý£¬¡àp=q=1£®
ÏÂÃæÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡­+$\frac{1}{\sqrt{n}}$£¾2$£¨\sqrt{n+1}-1£©$£®
¢Ùµ±n=1ʱ£¬2$£¨\sqrt{2}-1£©$=$\frac{2}{\sqrt{2}+1}$£¼1£¬¡à²»µÈʽ³ÉÁ¢£®
¢Ú¼ÙÉèµ±n=k£¨k¡Ý1£©Ê±£¬$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡­+$\frac{1}{\sqrt{k}}$£¾2$£¨\sqrt{k+1}-1£©$£®
Ôòµ±n=k+1ʱ£¬$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡­+$\frac{1}{\sqrt{k}}$+$\frac{1}{\sqrt{k+1}}$£¾2$£¨\sqrt{k+1}-1£©$+$\frac{1}{\sqrt{k+1}}$£¾2$£¨\sqrt{k+1}-1£©$+$\frac{2}{\sqrt{k+1}+\sqrt{k+1}}$£¾2$£¨\sqrt{k+1}-1£©$+$\frac{2}{\sqrt{k+2}+\sqrt{k+1}}$£¾2$£¨\sqrt{k+1}-1£©$+2$£¨\sqrt{k+2}-\sqrt{k+1}£©$=2$£¨\sqrt{k+2}-1£©$£¬¼´$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡­+$\frac{1}{\sqrt{k}}$+$\frac{1}{\sqrt{k+1}}$£¾2$£¨\sqrt{k+2}-1£©$£¬
¡àµ±n=k+1ʱ£¬³ÉÁ¢£®
×ÛÉϿɵãº?n¡ÊN*£¬$1+\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+¡­+$\frac{1}{\sqrt{n}}$£¾2$£¨\sqrt{n+1}-1£©$³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÁËж¨Òå¡°µÈ·½²îÊýÁС±¡¢Êýѧ¹éÄÉ·¨¡¢²»µÈʽµÄÐÔÖÊ¡¢µÝÍƹØϵµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÅ×ÎïÏßCµÄ¶¥µãÊÇÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1µÄÖÐÐÄ£¬½¹µãÓë¸ÃÍÖÔ²µÄÓÒ½¹µãF2Öغϣ¬ÈôÅ×ÎïÏßCÓë¸ÃÍÖÔ²ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪP£¬ÍÖÔ²µÄ×ó½¹µãΪF1£¬Ôò|PF1|=£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{7}{3}$C£®$\frac{5}{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Å×ÖÀ¼×£¬ÒÒÁ½Ã¶ÖʵؾùÔÈÇÒËÄÃæÉÏ·Ö±ð±êÓÐ1£¬2£¬3£¬4µÄÕýËÄÃæÌ壬Æäµ×ÃæÂäÓÚ×ÀÃ棬¼ÇËùµÃÊý×Ö·Ö±ðΪx£¬y£®Éè¦ÎΪËæ»ú±äÁ¿£¬Èô$\frac{x}{y}$ΪÕûÊý£¬Ôò¦Î=0£»Èô$\frac{x}{y}$ΪСÓÚ1µÄ·ÖÊý£¬Ôò¦Î=-1£»Èô$\frac{x}{y}$Ϊ´óÓÚ1µÄ·ÖÊý£¬Ôò¦Î=1£®
£¨1£©Çó¸ÅÂÊP£¨¦Î=0£©£»
£¨2£©Çó¦ÎµÄ·Ö²¼ÁУ¬²¢ÇóÆäÊýѧÆÚÍûE£¨¦Î£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈôÇúÏßC1£ºy=ax2£¨a£¾0£©ÓëÇúÏßC2£ºy=ex´æÔÚ¹«ÇÐÏߣ¬ÔòaµÄÈ¡Öµ·¶Î§Îª[$\frac{{e}^{2}}{4}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬an+2+ancosn¦Ð=1£¬¼ÇSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Ôò$\frac{{S}_{120}}{{a}_{61}}$µÈÓÚ£¨¡¡¡¡£©
A£®930B£®1520C£®60D£®61

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª±äÁ¿x¡¢yÂú×㣺$\left\{\begin{array}{l}{x¡Ý0}\\{x+3¡Ý2y}\\{y¡Ý2x}\end{array}\right.$£¬Ôòz=£¨$\sqrt{2}$£©x+yµÄ×î´óֵΪ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Éèżº¯Êýf£¨x£©Âú×ãf£¨x£©=2x-4£¨x¡Ý0£©£¬Èôf£¨x-2£©£¾0£¬ÔòxµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0£©B£®£¨0£¬4£©C£®£¨4£¬+¡Þ£©D£®£¨-¡Þ£¬0£©¡È£¨4£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©¶ÔÈÎÒâʵÊýx£¬y£¬ºãÓÐf£¨x£©+f£¨y£©=f£¨x+y£©£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©£¼0£¬ÓÖf£¨1£©=-$\frac{2}{3}$£®
£¨1£©ÇóÖ¤£ºf£¨x£©ÎªÆ溯Êý£»
£¨2£©ÇóÖ¤£ºf£¨x£©ÔÚRÉÏÊǼõº¯Êý£»
£¨3£©Çó²»µÈʽf£¨2x£©+f£¨x2-2£©£¼-4µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®É躯Êýf£¨x£©=|x-2|-|2x+5|£®
£¨1£©½â²»µÈʽf£¨x£©¡Ü0£»
£¨2£©Èôf£¨x£©-3|x-2|¡Üm£¬¶ÔÒ»ÇÐʵÊýx¾ù³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸