精英家教网 > 高中数学 > 题目详情

【题目】某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为

1)求抽取的男学生人数和女学生人数;

2)通过对被抽取的学生的问卷调查,得到如下列联表:


否定

肯定

总计

男生


10


女生

30



总计




完成列联表;

能否有的把握认为态度与性别有关?

3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.

现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.

解答时可参考下面临界值表:


0.10

0.05

0.025

0.010

0.005


2.706

3.841

5.024

6.635

7.879

【答案】(1)5550

(2) ①


否定

肯定

总计

男生

45

10

55

女生

30

20

50

总计

75

30

105

的把握认为态度与性别有关

(3)0.5

【解析】

试题解:(1)共抽取人, 1

男生人, 女生人, 3

2


否定

肯定

总计

男生

45

10

55

女生

30

20

50

总计

75

30

105

假设: 学生对体育课改上自习课的态度与性别无关

因为,

所以 有的把握认为态度与性别有关. 8

3)记一班被抽到的男生为持否定态度,持肯定态度;

二班被抽到的女生为持否定态度,持肯定态度.

则所有抽取可能共有20种:,,. 10

其中恰有一人持否定态度一人持肯定态度的有10种:. 11

从这人中随机抽取一男一女,其中恰有一人持肯定态度一人持否定态度事件为,. 12

答:(1)抽取男生55人,女生50人;(2)有有的把握认为态度与性别有关;

3)恰有一人持肯定态度一人持否定态度的概率为. 13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上是减函数,求实数的最大值;

2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数fx)在R上存在导数,当x0时,fx),则使得(x21fx)<0成立的x的取值范围为(

A.(﹣10)∪(01B.(﹣,﹣1)∪(01

C.(﹣10)∪(1+∞D.(﹣,﹣1)∪(1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数fx)=(3m22mx在(0+∞)上单调递增,gx)=x24x+t.

1)求实数m的值;

2)当x[19]时,记fx),gx)的值域分别为集合AB,设命题pxA,命题qxB,若命题q是命题p的必要不充分条件,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,在等腰梯形中,的中点.沿折起,使二面角,连接得到四棱锥(如图乙),的中点,是棱上一点.

1)求证:当的中点时,平面平面

2)是否存在一点,使平面与平面所成的锐二面角为,若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.

1)求直线和曲线的极坐标方程;

2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分.每项评分最低分0分,最高分100分.每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如图

请根据图中所提供的信息,完成下列问题:

1)若从交通得分排名前5名的景点中任取1个,求其安全得分大于90分的概率;

2)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为ξ,求随机变量ξ的分布列和数学期望;

3)记该市26个景点的交通平均得分为,安全平均得分为,写出的大小关系?(只写出结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:

2)若上恒成立,求的最大值与的最小值.

查看答案和解析>>

同步练习册答案