精英家教网 > 高中数学 > 题目详情

已知函数f(x)=aln(2x+1)+bx+1.
(1)若函数yf(x)在x=1处取得极值,且曲线yf(x)在点(0,f(0))处的切线与直线2xy-3=0平行,求a的值;
(2)若b,试讨论函数yf(x)的单调性.

(1)(2)当a≥0时,函数f(x)在区间为增函数;当a<0时,函数f(x)在区间为增函数;在区间为减函数.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=在点(-1,f(-1))处的切线方程为x+y+3=0.
(1)求函数f(x)的解析式.
(2)设g(x)=lnx.求证:g(x)≥f(x)在[1,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点的切线方程;
(2)对一切,恒成立,求实数的取值范围;
(3)当时,试讨论内的极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)当时,求曲线在点处的切线方程;
(2)讨论的单调性;
(3)若有两个极值点,记过点的直线的斜率为,问是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=axn(1-x)+b(x>0),n为正整数,ab为常数.曲线yf(x)在(1,f(1))处的切线方程为xy=1.
(1)求ab的值;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中的函数图象在点处的切线平行于轴.
(1)确定的关系;    (2)若,试讨论函数的单调性;
(3)设斜率为的直线与函数的图象交于两点)证明:.

查看答案和解析>>

同步练习册答案