精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点坐标为.

(1)求抛物线的标准方程;

(2)过点作互相垂直的直线,与抛物线分别相交于两点和两点,求四边形面积的最小值.

【答案】(1) (2)最小值.

【解析】试题分析:(1)由焦点坐标为可确定焦点在轴上, 从而可得抛物线 的标准方程;(2)设直线的方程为 ,直线与抛物线联立得,整理得 , 根据韦达定理,弦长公式点到直线距离公式以及三角形面积公式即可求得四边形面积为化简后,利用基本不等式可得结果.

试题解析:(1):由焦点坐标为可确定焦点在轴上,

所以抛物线的标准方程:

(2)由题意可知直线的斜率存在,设直线的方程为

直线与抛物线联立得整理得

所以

由抛物线的定义可知

同理可得

所以四边形ABCD的面积为

当且仅当时取最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图:在正方体ABCD﹣A1B1C1D1中,E为棱DD1的中点
(1)求证:BD1∥平面AEC
(2)求证:AC⊥BD1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标,直线被圆截得弦长为

(Ⅰ)求圆的方程;

(Ⅱ)从圆外一点向圆引切线,求切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的值;

2)过是否存在既是曲线的切线,又是曲线的切线?如果存在,求出直线方程;若果不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式:
(1)已知loga <1,则a>
(2)函数y=2x的图象与函数y=2x的图象关于y轴对称;
(3)函数f(x)=lg(mx2+mx+1)的定义域是R,则m的取值范围是0≤m<4;
(4)函数y=ln(﹣x2+x)的递增区间为(﹣∞, ]
正确的有 . (把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年某市街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:

年龄

受访人数

5

6

15

9

10

5

支持发展共享单车人数

4

5

12

9

7

3

(Ⅰ)由以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系:

年龄低于35岁

年龄不低于35岁

合计

支持

不支持

合计

(Ⅱ)若对年龄在的被调查人中随机选取两人,对年龄在的被调查人中随机选取一人进行调查,求选中的3人中支持发展共享单车的人数为2人的概率.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂每日生产一种大型产品1件,每件产品的投入成本为2000元.产品质量为一等品的概率为,二等品的概率为,每件一等品的出厂价为10000元,每件二等品的出厂价为8000元.若产品质量不能达到一等品或二等品,除成本不能收回外,没生产一件产品还会带来1000元的损失.

(1)求在连续生产3天中,恰有一天生产的两件产品都为一等品的的概率;

(2)已知该厂某日生产的2件产品中有一件为一等品,求另一件也为一等品的概率;

(3)求该厂每日生产该种产品所获得的利润(元)的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目语文数学的考试.某考场考生的两科考试成绩数据统计如下图所示,本次考试中成绩在内的记为,其中语文科目成绩在内的考生有10人.

1)求该考场考生数学科目成绩为的人数;

2)已知参加本考场测试的考生中,恰有2人的两科成绩均为.在至少一科成绩为的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面分别为的中点, 是边长为的正三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案