精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)在D上的“k阶增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,x>0时,f(x)=|x-a|-a,其中a为正常数,若f(x)为R上的“2阶增函数”,
则实数a的取值范围是(  )
A.(0,2)B.(0,1)C.(0,
1
2
D.(0,
1
4
∵f(x)是定义在R上的奇函数,
且当x>0时,f(x)=|x-a|-a,
f(x)=
|x-a|-a,x>0
-|x+a|+a,x<0

又f(x)为R上的“2阶增函数”,
当x>0时,由定义有|x+2-a|-a>|x-a|-a,
即|x+2-a|>|x-a|,其几何意义为到点a小于到点a-2的距离,
由于x>0故可知a+a-2<0得a<1.
当x<0时,分两类研究:
①若x+2<0,则有-|x+2+a|+a>-|x+a|+a,
即|x+a|>|x+2+a|,其几何意义表示到点-a的距离小于到点-a-2的距离,
由于x<0,故可得-a-a-2>0,得a<-1;
②若x+2>0,则有|x+2-a|-a>-|x+a|+a,
即|x+a|+|x+2-a|>2a,其几何意义表示到到点-a的距离与到点a-2的距离的和大于2a,
当a≤0时,显然成立,
当a>0时,由于|x+a|+|x+2-a|≥|-a-a+2|=|2a-2|,
故有|2a-2|>2a,必有2-2a>2a,解得a<
1
2

综上,对x∈R都成立的实数a的取值范围是a<
1
2

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案