精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+x+1,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设函数f(x)在区间(-
2
3
,-
1
3
)
内是减函数,求a的取值范围.
分析:(I)由于是高次函数,所以用导数法,先求导,令f′(x)=0分二种情况讨论:当判别式△≤0时为增函数,.当△>0时,由两个不同的根,则为单调区间的分水岭.
(II)先由函数求导,再由“函数f(x)在区间(-
2
3
,-
1
3
)
内是减函数”转化为“f'(x)=3x2+2ax+1≤0在(-
2
3
,-
1
3
)
恒成立”,进一步转化为最值问题:2a≥
-1-3x2
x
(-
2
3
,-
1
3
)
恒成立,求得函数的最值即可.
解答:解:(1)f(x)=x3+ax2+x+1求导:f'(x)=3x2+2ax+1
当a2≤3时,△≤0,f'(x)≥0,f(x)在R上递增
当a2>3,f'(x)=0求得两根为x=
-a±
a2-3
3

即f(x)在(-∞,
-a-
a2-3
3
)
递增,(
-a-
a2-3
3
-a+
a2-3
3
)
递减,(
-a+
a2-3
3
,+∞)
递增
(2)f'(x)=3x2+2ax+1≤0在(-
2
3
,-
1
3
)
恒成立.
2a≥
-1-3x2
x
(-
2
3
,-
1
3
)
恒成立.
可知
-1-3x2
x
(-
2
3
,-
3
3
)
上为减函数,在(-
3
3
,-
1
3
)
上为增函数.
-1-3x2
x
<4

所以a≥2.a的取值范围是[2,+∞).
点评:本题主要考查导数法研究函数的单调性,基本思路:当函数是增函数时,导数大于等于零恒成立,当函数是减函数时,导数小于等于零恒成立,然后转化为求相应函数的最值问题.(2)可以利用 f'(-
2
3
)≤0  且f'(-
1
3
)≤0,所以a≥2.a的取值范围是[2,+∞).解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案