精英家教网 > 高中数学 > 题目详情
(本题满分12分)某学校校办工厂有毁坏的房屋一座,留有一面14m的旧墙,现准备利用这面墙的一段为面墙,建造平面图形为矩形且面积为126的厂房(不管墙高),工程的造价是:
(1)修1m旧墙的费用是造1m新墙费用的25%;
(2)拆去1m旧墙用所得的材料来建1m新墙的费用是建1m新墙费用的50%.
问如何利用旧墙才能使建墙的费用最低?
保留12 m的旧墙时总费用为最低
解: 设保留旧墙x m,即拆去旧墙(14-x)m修新墙,设建1m新墙费用为a元,则修旧墙的费用为y=25%ax=ax; 拆旧墙建新墙的费用为y=(14-x)%a=a(14-x);建新墙的费用为:y=(+2x-14)a.
于是,所需的总费用为:
y=y+ y+ y
=[(a[2]a=35a,
当且仅当,即x=12时上式的“=”成立;
故保留12 m的旧墙时总费用为最低。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
函数其中t为常数.
(1)若对任意的,都有成立,求t的取值范围;
(2)若对任意的,都有成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)甲乙两地相距 km,汽车从甲地匀速行驶到乙地,速度不得超过 km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 km/h的平方成正比,比例系数为,固定部分为元.
(1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分10分)
某汽车销售公司以每台10万元的价格销售某种品牌的汽车,可售出该品牌汽车1000台,若将该品牌汽车每台的价格上涨,则销售量将减少,且该品牌汽车每台的价格上涨幅度不超过,问当该品牌汽车每台的价格上涨百分之几,可使销售的总金额最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知,
.
(Ⅰ)当时,求处的切线方程;
(Ⅱ)当时,设所对应的自变量取值区间的长度为(闭区间
 的长度定义为),试求的最大值;
(Ⅲ)是否存在这样的,使得当时,?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
2010年11月在广州召开亚运会,某小商品公司开发一种亚运会纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金提高,市场分析的结果表明:如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后,该公司销售纪念品的月平均利润是y(元)。
(1)写出y与x的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使该公司销售该纪念品的月平均利润最大。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入为50万元.设表示前年的纯利润总和, 表示前年的总支出.
[年的总收入-前年的总支出-投资额].
(1)写出的关系式
(2)写出前年的纯利润总和关于的函数关系式;并求该厂从第几年开始盈利?
(3)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元万元出售该厂,问哪种方案更合算?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一元二次方程有一个正根和一个负根的充要条件是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点个数为                                    (   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案