精英家教网 > 高中数学 > 题目详情

【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.

(1)求这200名学生每周阅读时间的样本平均数和样本方差(同一组中的数据用该组区间的中间值代表);

(2)由直方图可以认为,目前该校学生每周的阅读时间服从正态分布,其中近似为样本平均数近似为样本方差

(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若,令,则,且.利用直方图得到的正态分布,求

(ii)从该高校的学生中随机抽取20名,记表示这20名学生中每周阅读时间超过10小时的人数,求(结果精确到0.0001)以及的数学期望.

参考数据:.若,则.

【答案】(1)9,1.78(2) (i)(ii)见解析

【解析】

(1)直接由平均数公式及方差公式求解;(2)(i)由题知,则,求出,结合已知公式求解.(ⅱ)由(i)知,可得,由求解,再由正态分布的期望公式求的数学期望

解:(1)

(2)(i)由题知,∴

(ⅱ)由(i)知

可得

.

的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

1)求函数[0π] 上的最大值与最小值;

2)令,讨论的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有初中学生1800人,高中学生1200人. 为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:,并分别加以统计,得到如图所示的频率分布直方图.

(Ⅰ)写出的值;试估计该校所有学生中,阅读时间不小于30个小时的学生人数;

(Ⅱ)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线

)求的值和直线的直角坐标方程及的参数方程;

)已知曲线的参数方程为,(为参数),直线交于两点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形的直角梯形,,为线段的中点,平面为线段上一点(不与端点重合).

(Ⅰ)若

(i)求证:平面

(ii)求直线与平面所成的角的大小;

(Ⅱ)否存在实数满足,使得平面与平面所成的锐角为,若存在,确定的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的边长为4EF分别为的中点,以为棱将正方形折成如图所示的的二面角,点M在线段.

1)若M的中点,且直线与由ADE三点所确定平面的交点为G,试确定点G的位置,并证明直线

2)是否存在M,使得直线与平面所成的角为;若存在,求此时的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,的交点,平面是正三角形,.

1)求异面直线所成角的大小;

2)若点为棱上一点,且平面,求的值;

3)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当a≤0时,讨论函数fx)的单调性;

2)是否存在实数a,对任意的x1x20+∞),且x1x2,都有恒成立.若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案