精英家教网 > 高中数学 > 题目详情
设集合A={x∈R|x≤2},B={x∈R|
12
2x<6}
,则A∩B=
(-1,2]
(-1,2]
分析:求出集合B中其他不等式的解集,确定出集合B,找出A与B的公共部分,即可求出两集合的交集.
解答:解:由集合B中的不等式变形得:2-1<2x<2log26
解得:-1<x<log26,
∴B=(-1,log26),又A=(-∞,2],
则A∩B=(-1,2].
故答案为:(-1,2]
点评:此题属于以其他不等式的解法为平台,考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈A∪B”是“x∈C”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x∈R|x2-4x=0},集合B={x∈R|x2-2(a+1)x+a2-1=0},
(1)若B=∅,求实数a的取值范围;
(2)若B≠∅,且A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x∈R|x2-3x+2=0},B={x∈R|2x2-ax+2=0},若A∩B=A,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x∈R||2x-1|≥1},B={x∈R|
1x
-1>0
},
(1)求A与B的解集   (2)求A∩B.

查看答案和解析>>

同步练习册答案