精英家教网 > 高中数学 > 题目详情

双曲线数学公式与椭圆数学公式的焦点相同,若过右焦点F且倾斜角为60°的直线与双曲线的右支有两个不同交点,则此双曲线实半轴长的取值范围是


  1. A.
    (2,4)
  2. B.
    (2,4]
  3. C.
    [2,4)
  4. D.
    (2,+∞)
A
分析:要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,即 <1,求得a和b的不等式关系,进而根据b=转化成a和c的不等式关系,求得离心率的一个范围,最后根据双曲线的离心率大于1,综合可得求得e的范围.
解答:椭圆的半焦距c=4.
要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,
<tan60°=
即b<a
a,
整理得c<2a
∴a>2,
又a<c=4
则此双曲线实半轴长的取值范围是(2,4)
故选A.
点评:本题主要考查了双曲线的简单性质、圆锥曲线的共同特征.在求双曲线实半轴长的取值范围时,注意其值要小于4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
x2
4
+y2=1

(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
中相类似的结论,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

以圆锥曲线过焦点且垂直于轴的弦为直径的圆与准线的关系是相离,该圆锥曲线是(    )

A.椭圆           B.双曲线              C.抛物线         D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的方程为x2-y2=4,椭圆E以双曲线C的顶点为焦点,且椭圆右顶点A到双曲线C的渐近线距离为3.

(1)求椭圆E的方程;

(2)若直线y=x与椭圆E交于M、N两点(M点在第一象限),P、Q是椭圆上不同于M的相异两点,并且∠PMQ的平分线垂直于x轴.试求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的方程为x2-y2=4.椭圆E以双曲线C的顶点为焦点,且其右顶点A到双曲线C的渐近线距离为.

(1)求椭圆E的方程;

(2)若直线y=x与椭圆E交于M、N两点(M点在第一象限),P、Q是椭圆上不同于M的相异两点,点O为坐标原点,并且满足(+)·(-)=0.试求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省广州市番禺区仲元中学高三(下)2月月考数学试卷(文科)(解析版) 题型:解答题

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线中相类似的结论,并证明你的结论.

查看答案和解析>>

同步练习册答案