·ÖÎö £¨1£©ÓÉÌâÒâµÃµ½¹ØÓÚa£¬cµÄ·½³Ì£¬Çó³öa£¬cµÄÖµ£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©Éè³öÖ±ÏßlµÄ·½³Ìy=kx+t£¬ºÍÍÖÔ²·½³ÌÁªÁ¢£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵµÃµ½M£¬NµÄºá×ø±êµÄºÍÓë»ý£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽÇó³öOµ½Ö±ÏߵľàÀ룬´úÈëÈý½ÇÐÎÃæ»ý¹«Ê½£¬½áºÏMNµÄÖеãΪG£¬ÇÒC£¬DÁ½µãµ½Ö±ÏßOGµÄ¾àÀëÏàµÈ¿ÉµÃkµÄÖµ£¬°ÑÈý½ÇÐÎÃæ»ýת»¯Îªº¬ÓÐtµÄ¹Øϵʽ£¬ÔòÇó³öʹÈý½ÇÐÎOMNµÄÃæ»ý×î´óʱµÄkÓëtµÄÖµ£¬½øÒ»²½ÇóµÃ¡÷OCDµÄÃæ»ý£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}{\frac{|c+1|}{\sqrt{2}}=\sqrt{2}}\\{\frac{a-c}{|a-2|}=\frac{\sqrt{2}}{2}}\end{array}\right.$£¬½âµÃ$a=\sqrt{2}£¬c=1$£¬
¡àb2=a2-c2=2-1=1£¬
ÔòÍÖÔ²EµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨2£©Èçͼ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+t£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4ktx+2t2-2=0£¬
¡÷=16k2t2-4£¨1+2k2£©£¨2t2-2£©=16k2-8t2+8£¾0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=-\frac{4kt}{1+2{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{2{t}^{2}-2}{1+2{k}^{2}}$£¬
ÓÉC£¬DÁ½µãµ½Ö±ÏßOGµÄ¾àÀëÏàµÈ£¬¿ÉÖªGΪCDµÄÖе㣬
ÓÉÖ±Ïß·½³ÌΪy=kx+t£¬
µÃC£¨-$\frac{t}{k}£¬0$£©£¬D£¨0£¬t£©£¬
¡àG£¨$-\frac{t}{2k}£¬\frac{t}{2}$£©£¬
ÓÖGΪMNµÄÖе㣬
¡à$-\frac{t}{2k}=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{2kt}{1+2{k}^{2}}$£¬½âµÃ${k}^{2}=\frac{1}{2}$£¬
´úÈë¡÷=16k2-8t2+8£¾0£¬¿ÉµÃt2£¼2£®
¡à|MN|=$\sqrt{1+{k}^{2}}\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}\sqrt{£¨-\frac{4kt}{1+2{k}^{2}}£©^{2}-4\frac{2{t}^{2}-2}{1+2{k}^{2}}}$
=2$\sqrt{1+{k}^{2}}•\frac{\sqrt{4{k}^{2}-2{t}^{2}+2}}{1+2{k}^{2}}$£®
ÔµãOµ½Ö±Ïßy=kx+tµÄ¾àÀëd=$\frac{|t|}{\sqrt{{k}^{2}+1}}$£®
¡à${S}_{¡÷OMN}=\frac{1}{2}•\frac{|t|}{\sqrt{{k}^{2}+1}}•2\sqrt{1+{k}^{2}}•\frac{\sqrt{4{k}^{2}-2{t}^{2}+2}}{1+2{k}^{2}}$=$\frac{|t|\sqrt{4{k}^{2}-2{t}^{2}+2}}{1+2{k}^{2}}$£®
´úÈë${k}^{2}=\frac{1}{2}$£¬¿ÉµÃ
${S}_{¡÷OMN}=\frac{\sqrt{2}|t|\sqrt{2-{t}^{2}}}{2}=\frac{\sqrt{2}\sqrt{-{t}^{4}+2{t}^{2}}}{2}$=$\frac{\sqrt{2}}{2}\sqrt{£¨-{t}^{2}-1£©^{2}+1}$£®
ÓÉt2£¼2Öª£¬µ±t2=1ʱ£¬S¡÷OMNÈ¡µÃ×î´óÖµ£¬µÈÓÚ$\frac{\sqrt{2}}{2}$£®
´Ëʱ${t}^{2}=1£¬{k}^{2}=\frac{1}{2}$£¬$|k|=\frac{\sqrt{2}}{2}$£¬
${S}_{¡÷OCD}=\frac{1}{2}|OC|•|OD|=\frac{1}{2}$$|\frac{t}{k}|•|t|$=$\frac{1}{2}•\frac{1}{\frac{\sqrt{2}}{2}}=\frac{\sqrt{2}}{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬Éæ¼°Ö±ÏßÓëԲ׶ÇúÏߵĹØϵÎÊÌ⣬³£ÁªÁ¢Ö±Ïß·½³ÌºÍԲ׶ÇúÏß·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìºó£¬ÀûÓøùÓëϵÊýµÄ¹ØϵÇó½â£¬ÊÇѹÖáÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{{x}^{2}}{\frac{1}{2}}$-y2=1 | B£® | $\frac{{y}^{2}}{\frac{1}{2}}$-x2=1 | ||
C£® | x2-$\frac{{y}^{2}}{\frac{1}{2}}$=1 | D£® | $\frac{{x}^{2}}{\frac{1}{2}}$-y2=1»ò$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Æ溯Êý | B£® | żº¯Êý | ||
C£® | ¼È²»ÊÇÆ溯Êý£¬Ò²²»ÊÇżº¯Êý | D£® | ¼ÈÊÇÆ溯Êý£¬Ò²ÊÇżº¯Êý |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com