精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)在(1)的条件下,求证:

(3)当时,求函数上的最大值.

【答案】(1)(2)见解析(3)最大值为.

【解析】分析:(1)求出导数,写出切线方程

(2)利用导数求出的最小值,由最小值>0得结论;

(3)求出导函数,其零点为,首先比较的大小,得出的单调性,然后再比较大小得出最大值.

详解:(1)当时,,所以

切线方程为.

(2)由(1)知,则,当时时,

时,.

所以上单调递减,上单调递增,

时,函数最小值是,因此.

(3),令,则,当时,设

因为,所以上单调递增,

,所以恒成立,即

,当;所以上单调递减,

上单调递增.所以上的最大值等于

因为

,所以.

由(2)恒成立,所以上单调递增.

又因为,所以恒成立,即

因此当时,上的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求证:
(2)设 =(0,1),若 + = ,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2是双曲线C: (a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)若上单调递增,求正数的最大值;

2)若函数内恰有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,已知点A5,-2,B7,3,且边AC的中点M在y轴上,边BC的中点N在x轴上,求:

(1)顶点C的坐标;

(2)直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为 .记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数
正方形数N(n,4)=n2
五边形数
六边形数N(n,6)=2n2﹣n,

可以推测N(n,k)的表达式,由此计算N(10,24)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1=2,an1an=3·22n1.

(1)求数列{an}的通项公式;

(2)bnnan,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,对任意,点都在函数 的图象上.

1)求数列的通项公式;

2)若数列,求数列的前项和

3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案