【题目】设定义在R上的函数f(x)是最小正周期2π的偶函数,f′(x)是函数f(x)的导函数,当x∈[0,π]时,0<f(x)<1;当x∈(0,π),且x≠ 时,(x﹣ )f′(x)>0,则函数y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为( )
A.2
B.4
C.5
D.8
科目:高中数学 来源: 题型:
【题目】已知点A(﹣2,0),B(2,0),P(x0 , y0)是直线y=x+3上任意一点,以A,B为焦点的椭圆过P,记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是( )
A.e与x0一一对应
B.函数e(x0)无最小值,有最大值
C.函数e(x0)是增函数
D.函数e(x0)有最小值,无最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知F为抛物线y2=4x的焦点,点A,B,C在该抛物线上,其中A,C关于x轴对称(A在第一象限),且直线BC经过点F.
(1)若△ABC的重心为G( ),求直线AB的方程;
(2)设S△ABO=S1 , S△CFO=S2 , 其中O为坐标原点,求S12+S22的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们把形如 的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边求对数得 ,两边对x求导数,得 ,于是 ,运用此方法可以求得函数 在(1,1)处的切线方程是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ax2﹣(2a+1)x+2lnx(a∈R). (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2﹣2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=1,AB=2.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD;
(3)求点D到平面PMC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若 (acosB+bcosA)=2csinC,a+b=4,且△ABC的面积的最大值为 ,则此时△ABC的形状为( )
A.锐角三角形
B.直线三角形
C.等腰三角形
D.正三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com