精英家教网 > 高中数学 > 题目详情

【题目】综合题。
(1)已知复数z在复平面内对应的点在第四象限,|z|=1,且z+ =1,求z;
(2)已知复数z= ﹣(1+5i)m﹣3(2+i)为纯虚数,求实数m的值.

【答案】
(1)解:设z=a+bi,a,b∈R,则由题意可得 ,解得

再根据复数z在复平面内对应的点在第四象限,可得b=﹣ ,∴z= i


(2)解:∵复数z= ﹣(1+5i)m﹣3(2+i)=(m2﹣m﹣6)+(2m2﹣5m﹣3)i为纯虚数,

∴m2﹣m﹣6=0,且2m2﹣5m﹣3≠0,求得m=﹣2


【解析】(1)设z=a+bi,a,b∈R,则由题意可得 ,结合复数z在复平面内对应的点在第四象限,解得a、b的值.(2)化简复数z为(m2﹣m﹣6)+(2m2﹣5m﹣3)i,是纯虚数,可得m2﹣m﹣6=0,且2m2﹣5m﹣3≠0,由此求得m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数,函数轴上的截距我,与轴最近的最高点的坐标是

(Ⅰ)求函数的解析式;

(Ⅱ)将函数的图象向左平移)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数的图象,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一个容积V一定的铝合金盖的圆柱形铁桶,已知单位面积铝合金的价格是铁的3倍,当总造价最少时,桶高为(
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆=1(a>b>0)的左右焦点分别为F1(-c,0)、F2(c,0),过椭圆中心的弦PQ满足丨PQ丨=2,∠PF2Q=90°,且△PF2Q的面积为1.

(1)求椭圆的方程;

(2)直线l不经过点A(0,1),且与椭圆交于M,N两点,若以MN为直径的圆经过点A,求证:直线l过定点,并求出该定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(Ⅰ)证明:PF⊥FD;
(Ⅱ)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(Ⅲ)若PB与平面ABCD所成的角为45°,求二面角A﹣PD﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,a为正常数.
(1)若f(x)=lnx+φ(x),且a= ,求函数f(x)的单调增区间;
(2)在(1)中当a=0时,函数y=f(x)的图象上任意不同的两点A(x1 , y1),B(x2 , y2),线段AB的中点为C(x0 , y0),记直线AB的斜率为k,试证明:k>f'(x0).
(3)若g(x)=|lnx|+φ(x),且对任意的x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,数列{an}满足a1=1,an+1=f( ),n∈N*
(1)求数列{an}的通项公式;
(2)令bn= (n≥2),b1=3,Sn=b1+b2++bn , 若Sn 对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=﹣ eax(a>0,b>0)的图象在x=0处的切线与圆x2+y2=1相切,则a+b的最大值是(
A.4
B.2
C.2
D.

查看答案和解析>>

同步练习册答案