精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域为,值域为,即,若,则称上封闭.

1)分别判断函数 上是否封闭,说明理由;

2)函数的定义域为,且存在反函数,若函数上封闭,且函数上也封闭,求实数的取值范围;

3)已知函数的定义域为,对任意,若,有恒成立,则称上是单射,已知函数上封闭且单射,并且满足 ,其中),,证明:存在的真子集,

,使得在所有)上封闭.

【答案】(1)见解析;(2);(3)见解析.

【解析】试题分析:(1)根据上封闭的定义,分别求出函数 上的值域,即可判断是否封闭;(2)函数D上封闭,则.函数上封闭,则得到: .从而问题转化为: 两不等实根.(3)分两种情况: ,第一种情况显然不成立,第二种情况,因为是单射,因此取一个是唯一的使得的根,换句话说考虑到,即因为是单射,则这样就有了.接着令,并重复上述论证证明..

试题解析:

1因为函数的定义域为,值域为(取一个具体例子也可),

所以上不封闭.

上封闭

2函数D上封闭,则.函数上封闭,则

得到: .

单调递增.

两不等实根.

解得

另解: 两不等实根.令

有两个不等根,画图,由数形结合可知,

解得

3如果,则,与题干矛盾.

因此,则.

接下来证明因为是单射,因此取一个

是唯一的使得的根,换句话说

考虑到,即

因为是单射,则

这样就有了.

接着令,并重复上述论证证明..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着我国经济的快速发展,民用汽车的保有量也迅速增长.机动车保有量的发展影响到环境质量、交通安全、道路建设等诸多方面.在我国,尤其是大中型城市,机动车已成为城市空气污染的重要来源.因此,合理预测机动车保有量是未来进行机动车污染防治规划、道路发展规划等的重要前提.从2012年到2016年,根据“云南省某市国民经济和社会发展统计公报”中公布的数据,该市机动车保有量数据如表所示.

年份

2012

2013

2014

2015

2016

年份代码

1

2

3

4

5

机动车保有量(万辆)

169

181

196

215

230

(1)在图所给的坐标系中作出数据对应的散点图;

(2)建立机动车保有量关于年份代码的回归方程;

(3)按照当前的变化趋势,预测2017年该市机动车保有量.

附注:回归直线方程中的斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 分别是的中点,底面是边长为2的正方形, 且平面平面

1)求证:平面平面

2)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 满足,且当时, ,令

)写出的所有可能的值.

)求的最大值.

)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于两点,中点.

)当垂直时,求证:过圆心

)当时,求直线的方程;

)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形与梯形所在平面互相垂直,,点中点 .

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,M,N分别为的中点.

(1)证明:直线MN//平面CAB1

(2)若四边形ABB1A1是菱形,且 ,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修45:不等式选讲

已知函数

1)当时,求不等式的解集;

2)若函数的值域为的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)在曲线上求一点,使它到直线 为参数)的距离最短,写出点的直角坐标.

查看答案和解析>>

同步练习册答案