精英家教网 > 高中数学 > 题目详情
(2013•绵阳一模)己知二次函数y=f(x) 的图象过点(1,-4),且不等式f(x)<0的解集是(O,5).
(I )求函数f(x)的解析式;
(II)设g(x)=x3-(4k-10)x+5,若函数h(x)=2f(x)+g(x)在[-4,-2]上单调递增,在[-2,0]上单调递减,求y=h(x)在[-3,1]上的最大值和最小值..
分析:(1)根据函数零点,方程根与不等式解集端点之间的关系,结合二次函数y=f(x) 的图象过点(1,-4),可求出函数f(x)的解析式;
(II)由(I)可求出函数h(x)的解析式(含参数k),进而由函数极大值点为-2,求出k值,结合导数法求最值的步骤,可得答案.
解答:解:(Ⅰ)由已知y=f (x)是二次函数,且f (x)<0的解集是(0,5),
可得f (x)=0的两根为0,5,
于是设二次函数f (x)=ax(x-5),
代入点(1,-4),得-4=a×1×(1-5),解得a=1,
∴f (x)=x(x-5). …(4分)
(Ⅱ)h(x)=2f (x)+g(x)=2x(x-5)+x3-(4k-10)x+5=x3+2x2-4kx+5,
于是h′(x)=3x2+4x-4k,
∵h(x)在[-4,-2]上单调递增,在[-2,0]上单调递减,
∴x=-2是h(x)的极大值点,
∴h′(2)=3×(-2)2+4×(-2)-4k=0,解得k=1.  …(6分)
∴h(x)=x3+2x2-4x+5,进而得h′(x)=3x2+4x-4.
令h′(x)=3x2+4x-4=0,得x=-2,或x=
2
3

由下表:
x (-3,-2) -2 (-2,
2
3
2
3
2
3
,1)
h′(x) + 0 - 0 +
h(x) 极大 极小
可知:h(-2)=(-2)3+2×(-2)2-4×(-2)+5=13,h(1)=13+2×12-4×1+5=4,
h(-3)=(-3)3+2×(-3)2-4×(-3)+5=8,h(
2
3
)=(
2
3
3+2×(
2
3
2-4×
2
3
+5=
95
27

∴h(x)的最大值为13,最小值为
95
27
.…(12分)
点评:本题考查的知识点是二次函数的性质,函数零点,方程根与不等式解集端点的关系,导数法求函数的极值与最值,其中求出函数h(x)的解析式是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绵阳一模)函数f(x)=ex-x-2的零点所在的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳一模)已知定义在R上的函数f(x)满足f(1)=1,f(1-x)=1-f(x),2f(x)=f(4x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f(
1
33
)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳一模)已知数列{an}是等比数列且a3=
14
,a6=2.
(I)求数列{an}的通项公式;
(II)若数列{an}满足bn=3log2an,且数列{bn}的前“项和为Tn,问当n为何值时,Tn取最小值,并求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳一模)在△ABC中,角A,B,C的对边分别是a,b,c若asinA=(a-b)sinB+csinC.
(I )求角C的值;
(II)若△ABC的面积为
3
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳一模)已知函数f(x)=lnx-ax+1在x=2处的切线斜率为-
1
2

(I)求实数a的值及函数f(x)的单调区间;
(II)设g(x)=kx+1,对?x∈(0,+∞),f(x)≤g(x)恒成立,求实数k的取值范围;
(III)设bn=
ln(n+1)
n3
,证明:b1+b2+…+bn<1+ln2(n∈N*,n≥2).

查看答案和解析>>

同步练习册答案