【题目】(1)求函数在的最大值;
(2)证明:函数在有两个极值点,且.
【答案】(1);(2)证明见解析.
【解析】
(1)利用导数求出函数在上的单调性即可;
(2)首先利用导数求出的单调性,即可得到,然后分别证明,,,然后即可证明.
(1),则在上单调递增,
又,
所以在有唯一的零点.
当时,单调递减;
时,单调递增.
又,
所以在的最大值为.
(2),
则当时,单调递增,
又,
所以在有唯一的零点,
此时,时,;时,,
所以是极小值点,不妨令.
当时,,所以;
当,设.
由(1)知, 有唯一的零点,
则时,单调递减,即单调递减;
时,单调递增,即单调递增
又,
所以在有唯一的零点,
此时时,;时,,
所以是极大值点,即,
所以在有两个极值点,其中,,
且,由于,所以.
因为,,
所以,即.
又,所以,同理,
所以. .
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x22(a+2)x+a2,g(x)=x2+2(a2)xa2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则AB=( )
A.a22a16B.a2+2a16
C.16D.16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知线段是过抛物线的焦点F的一条弦,过点A(A在第一象限内)作直线垂直于抛物线的准线,垂足为C,直线与抛物线相切于点A,交x轴于点T,给出下列命题:
(1);
(2);
(3).
其中正确的命题个数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】法国的数学家费马(PierredeFermat)曾在一本数学书的空白处写下一个看起来很简单的猜想:当整数时,找不到满足的正整数解.该定理史称费马最后定理,也被称为费马大定理.费马只是留下这个叙述并且说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下.费马也因此为数学界留下了一个千古的难题,历经数代数学家们的努力,这个难题直到1993年才由我国的数学家毛桂成完美解决,最终证明了费马大定理的正确性.现任取,则等式成立的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数,常数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)写出及直线的直角坐标方程,并指出是什么曲线;
(2)设是曲线上的一个动点,求点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】武汉某商场为促进市民消费,准备每周随机的从十个热门品牌中抽取一个品牌送消费券,并且某个品牌被抽中后不再参与后面的抽奖,没有抽中的品牌则继续参加下周抽奖,假设每次抽取时各品牌被抽到的可能性相同,每次抽取也相互独立.
(1)求某品牌到第三次才被抽到的概率;
(2)为了使更多品牌参加活动,商场做出调整,从第一周抽取后开始每周会有一个新的品牌补充进抽取队伍,品牌A从第一周就开始参加抽奖,商场准备开展半年(按26周计算)的抽奖活动,记品牌A参与抽奖的次数为X,试求X的数学期望(精确到0.01).
参考数据:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com