精英家教网 > 高中数学 > 题目详情
6.从一小组中选出正、副组长各一人,与从这个小组中选出4名学生代表的选法种数之比为2:13,则这个小组的人数是(  )
A.10B.13C.15D.18

分析 设这个小组的人数是n,则从一小组中选出正、副组长各一人,共有An2种,从这个小组中选出4名学生代表,有Cn4种,由题意得到$\frac{{A}_{n}^{2}}{{C}_{n}^{4}}$=$\frac{2}{13}$,解得即可.

解答 解:设这个小组的人数是n,则从一小组中选出正、副组长各一人,共有An2=n(n-1)种,
从这个小组中选出4名学生代表,有Cn4=$\frac{n(n-1)(n-2)(n-3)}{4×3×2×1}$种,
因为从一小组中选出正、副组长各一人,与从这个小组中选出4名学生代表的选法种数之比为2:13,
∴$\frac{{A}_{n}^{2}}{{C}_{n}^{4}}$=$\frac{2}{13}$,
即(n-2)(n-3)=12×13,
解得n=15,
故选:C.

点评 本题考查了排列和组合的区别,以及排列和组合数公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为等差数列,a2=3,a3+a6=11.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}=2({a_n}+\frac{1}{{{2^{a_n}}}})$,其中n∈N*,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:x+y-3=0,l2:x-y十1=0,且A为两直线的交点.
(1)求点A的坐标;
(2)求过点A且斜率为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在锐角△ABC中,内角∠A、∠B、∠C的对边分别为a、b、c,已知a=$\sqrt{2}$bsinA.
(1)求∠B的大小;
(2)若AO是边BC上的中线,AO=BC=2,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)满足:f(0)=m-4,f(m)=-m2+m-4,且对任意的实数t,都有f(-t)=f(2m+t).
(1)若函数f(x)在区间[-1,3]上是单调函数,求实数m的取值范围;
(2)若关于x的不等式f(x)<0的解集为(-1,3),求实数m的取值;
(3)若函数f(x)在区间[0,2]上的最小值为-$\frac{19}{4}$,求实数m的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{\sqrt{x+2}}{x+3}$的值域是$[0,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=tan(2x-$\frac{π}{4}$)+1,x∈[0,π],使f(x)为正值的x的集合为[0,$\frac{3π}{8}$)、或($\frac{π}{2}$,$\frac{7π}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=2sin(ωx+φ),函数图象上的一个最高点为(2,2),由此最高点到相邻的最低的曲线与x轴交于点(6,0).
(1)求函数的解析式;
(2)求函数取得最小值时x的值及函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解不等式loga(3+2x-x2)>loga(x2+x).

查看答案和解析>>

同步练习册答案