分析 根据y=f(x)为R上的偶函数,且满足f(x+4)=f(4-x),得出函数为周期函数,周期是8,然后再利用函数的性质解答
解答 解:∵y=f(x)为R上的偶函数,
∴f(-x)=f(x),
又f(x+4)=f(4-x),
∴f(x+8)=f[(4-(4+x)]=f(-x)=f(x),
∴y=f(x)的周期是8,
又f[2016+sin(α-2π)•sin(π+α)-cos2(-α)]=f[2016+sin2α-cos2α]=f(2015+2sin2α)=f(2016-$\frac{5}{9}$)=f(-$\frac{5}{9}$)=f($\frac{5}{9}$)=$\frac{5}{9}$,
故答案为:$\frac{5}{9}$.
点评 本题考查函数的周期性,结合函数的其他性质即可解得.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“?x∈R.ex>0”的否定是“?x∈R,ex>0” | |
B. | 命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题是真命题 | |
C. | “x2+2x≥ax在x∈[1,2]上恒成立”?“对于x∈[1,2]有(x2+2x)min≥(ax)max” | |
D. | 命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一、三象限角 | B. | 第二、四象限角 | C. | 第二、三象限角 | D. | 第一、四象限角 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com