精英家教网 > 高中数学 > 题目详情
1.在△ABC中,∠B=45°,D是边BC上一点,AD=5,CD=3,AC=7.
(1)求∠ADC的值;
(2)求$\overrightarrow{BA}•\overrightarrow{DA}$的值.

分析 (1)由余弦定理结合已知可求cos∠ADC的值,结合范围,利用特殊角的三角函数值即可求解∠ADC的值.
(2)由正弦定理可求AB,利用平面向量数量积的运算可求$\overrightarrow{BA}•\overrightarrow{DA}$的值.

解答 (本小题满分14分)
解:(1)在△ADC中,由余弦定理得:AD2+CD2-2AD•CDcos∠ADC=AC2
把AD=5,CD=3,AC=7代入上式得$cos∠ADC=-\frac{1}{2}$.
因为0<∠ADC<π,所以∠ADC=$\frac{2π}{3}$.…(7分)
(2)在△ADC中,由正弦定理得:$\frac{AD}{sin∠ABD}=\frac{AB}{sin∠ADB}$.
故$AB=\frac{AD}{sin∠ABD}×sin∠ADB=\frac{{5\sqrt{6}}}{2}$.
所以$\overrightarrow{BA}•\overrightarrow{DA}=\frac{{5\sqrt{6}}}{2}×5×cos{75°}=\frac{{25(3-\sqrt{3})}}{4}$…(14分)

点评 本题主要考查了正弦定理,余弦定理,平面向量数量积的运算,特殊角的三角函数值的应用,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.下列几个命题中真命题的序号是(2)(4).
(1)已知函数f(x)的定义域为[2,5),则f(2x-1)的定义域为[3,9);
(2)函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,也是奇函数;
(3)若f(x+1)为偶函数,则f(x+1)=f(-x-1);
(4)已知函数f(x)=x2+2ax+2在区间[-5,5]上是单调增函数,则实数a≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),如果x1+x2=6,那么|AB|=(  )
A.8B.10C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=loga(x-1)(a>0,a≠1)的图象过定点A,若点A也在函数f(x)=2x+b的图象上,则f(log23)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\frac{π}{4}<α<π,cos(α-\frac{π}{4})=\frac{3}{5}$,则tanα=(  )
A.7B.7或$\frac{1}{7}$C.-7D.$-\frac{1}{7}或7$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{a}x^{2}+1}{bx}$(b>0).
(1)求f(x)的单调递减区间;
(2)如果对任意的x>0.都有f(x)≥f(1)=2成立.求|[f(x)]3|-|f(x3)|,(x≠0)的最小值;
(3)若a>0,x1+x2>0,x2+x3>0,x3+x1>0,|xi|>$\frac{1}{\sqrt{a}}$(i=1,2,3),证明f(x1)+f(x2)+f(x3)>$\frac{2\sqrt{a}}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中不正确的是(  )
A.向量$\overrightarrow{AB}$与向量$\overrightarrow{BA}$的长度相等
B.任意一个非零向量都可以平行移动
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$≠$\overrightarrow{0}$,则$\overrightarrow{a}$≠$\overrightarrow{0}$
D.两个有共同起点且共线的向量,其终点不一定相同.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(2,k),且2$\overrightarrow{a}$=$\overrightarrow{b}$,那么实数k=-4.

查看答案和解析>>

同步练习册答案