精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为 ,且过点 .
(1)求椭圆 的方程;
(2)设不过原点 的直线 与椭圆 交于 两点,直线 的斜率分别为 ,满足 ,试问:当 变化时, 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.

【答案】
(1)解:依题意可得 解得 .
椭圆 的方程是
(2)解:当 变化时, 为定值,证明如下:
得, .
,则 (*)
∵直线 的斜率依次为 ,且
,得
将(*)代入得:
经检验满足
m 2 为定值
【解析】(1)由条件列出关于a,b,c的方程组求a,b,c得到椭圆方程;
(2)将直线方程代入椭圆方程消去y得到关于x的一元二次方程,用韦达定理表示出两根和与两根积,代入条件中求出m2为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且过点
(Ⅰ)求椭圆 的方程;
(Ⅱ)设直线 与圆 相切于点 ,且 与椭圆 只有一个公共点 .
①求证:
②当 为何值时, 取得最大值?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产不同规格的一种产品,根据检测标准,其合格产品的质量 与尺寸 之间满足关系式 为大于 的常数),现随机抽取6件合格产品,测得数据如下:

对数据作了处理,相关统计量的值如下表:

(1)根据所给数据,求 关于 的回归方程(提示:由已知, 的线性关系);
(2)按照某项指标测定,当产品质量与尺寸的比在区间 内时为优等品,现从抽取的6件合格产品再任选3件,求恰好取得两件优等品的概率;
(附:对于一组数据 ,其回归直线 的斜率和截距的最小二乘法估计值分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统综》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有( )盏灯.
A.14
B.12
C.10
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输出的 值为3,则输入 的值可以是( )

A.20
B.21
C.22
D.23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)f(x)的最小正周期及单调减区间;

(2)若α∈(0,π),且f,求tan的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,江的两岸可近似地看出两条平行的直线,江岸的一侧有 两个蔬菜基地,江岸的另一侧点处有一个超市.已知中任意两点间的距离为千米,超市欲在之间建一个运输中转站 两处的蔬菜运抵处后,再统一经过货轮运抵处,由于 两处蔬菜的差异,这两处的运输费用也不同.如果从处出发的运输费为每千米元.从处出发的运输费为每千米元,货轮的运输费为每千米元.

(1)设,试将运输总费用(单位:元)表示为的函数,并写出自变量的取值范围;

(2)问中转站建在何处时,运输总费用最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①样本方差反映的是所有样本数据与样本平均值的偏离程度;

②基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;

③某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为

④如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交。

其中真命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某几何体的三视图.

(1)求该几何体外接球的体积;

(2)求该几何体内切球的半径.

查看答案和解析>>

同步练习册答案