精英家教网 > 高中数学 > 题目详情
17.己知直线l1:y=$\frac{1}{2}$x及直线l2:y=2x都与两不同的圆C1、C2相切,且圆C1、C2均过点P(1,$\frac{3}{2}$),则这两圆的圆心距|C1C2|=(  )
A.$\frac{\sqrt{13}}{2}$B.$\frac{4\sqrt{5}}{9}$C.$\frac{10\sqrt{119}}{9}$D.$\frac{4\sqrt{17}}{3}$

分析 设圆心坐标为(x,y),由于圆与直线l1:y=$\frac{1}{2}$x,l2:y=2x都相切,根据点到直线的距离公式得圆心只能在直线y=x上,设C1(a,a),C2(b,b),推导出a,b是方程$\frac{9{x}^{2}}{5}$-5x+$\frac{13}{4}$=0的两根,由此能求出.这两圆的圆心距|C1C2|.

解答 解:设圆心坐标为(x,y),由于圆与直线l1:y=$\frac{1}{2}$x,l2:y=2x都相切,
根据点到直线的距离公式得:$\frac{|x-2y|}{\sqrt{5}}$=$\frac{|2x-y|}{\sqrt{5}}$,解得y=x,
∴圆心只能在直线y=x上,
设C1(a,a),C2(b,b),
则圆C1的方程为(x-a)2+(y-a)2=$\frac{{a}^{2}}{5}$,
圆C2的方程为(x-b)2+(y-b)2=$\frac{{b}^{2}}{5}$,
将(1,$\frac{3}{2}$)代入,得:(1-a)2+($\frac{3}{2}$-a)2=$\frac{{a}^{2}}{5}$,(1-b)2+($\frac{3}{2}$-b)2=$\frac{{b}^{2}}{5}$,
∴a,b是方程(1-x)2+($\frac{3}{2}$-x)2=$\frac{{x}^{2}}{5}$,即$\frac{9{x}^{2}}{5}$-5x+$\frac{13}{4}$=0的两根,
∴a+b=$\frac{25}{9}$,ab=$\frac{65}{36}$,
∴|C1C2|=$\sqrt{(a-b)^{2}+(a-b)^{2}}$=$\sqrt{2}$•$\sqrt{(a+b)^{2}-4ab}$=$\frac{4\sqrt{5}}{9}$.
故选:B.

点评 本题考查两圆的圆心距的求法,是中档题,解题时要认真审题,注意圆的性质、点到直线的距离公式、韦达定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图如图所示,其中正视图和俯视图均为全等的正方形(边长为2),侧视图为等腰直角三角形(直角边的长为2),则该几何体的表面积是$12+4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$,给出下列结论:
①f(x)的单调递增区间是(0,2);
②函数y=f(x)的图象与直线y=k(k∈R)至少有一个公共点;
③函数y=f(x)的图象与y=x3-2x2+x的图象有三个公共点,
其中正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示为某几何体形状的纸盒的三视图,在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{3\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,三棱柱ABC-A1B1C1中,AB=BC,AB⊥BC,侧面AA1C1C是菱形,∠A1AC=60°,且侧面AA1C1C⊥底面ABC,点O为线段AC的中点,点E为线段BC1上的一动点(不包括端点).
(1)求证:A1O⊥平面A1B1C1
(2)试确定点E的位置,使平面A1AE与平面ABC所成的锐二面角的余弦值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若角α的余弦线长度为0,则它的正弦线的长度为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(4,0),B(2$\sqrt{3}$,$\frac{π}{6}$),圆C的极坐标方程为ρ=2sinθ.
(Ⅰ)求直线AB和圆C的直角坐标方程.
(Ⅱ)已知P为圆C上的任意一点,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前10项和为30,它的前30项和为210,则前20项和为(  )
A.100B.120C.390D.540

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设向量$\overrightarrow{e_1}$和$\overrightarrow{e_2}$不共线.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow{BC}$=2$\overrightarrow{e_1}$+8$\overrightarrow{e_2}$,$\overrightarrow{CD}$=3($\overrightarrow{e_1}$-$\overrightarrow{e_2}$),求证:A、B、D三点共线;
(2)若|$\overrightarrow{e_1}$|=2,|$\overrightarrow{e_2}$|=3,$\overrightarrow{e_1}$和$\overrightarrow{e_2}$的夹角为60°,试确定k,使$k\overrightarrow{e_1}$+$\overrightarrow{e_2}$和$\overrightarrow{e_1}$+k$\overrightarrow{e_2}$垂直.

查看答案和解析>>

同步练习册答案