精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中

(1)求的单调减区间;

(2)当时,恒成立,求的取值范围;

(3)设 只有两个零点),求的值.

【答案】(1)单调减区间为(-∞,0)和(0,1);(2);(3).

【解析】

(1)先求得函数的定义域,然后求导,利用导数求得函数的单调减区间.(2)构造函数,利用其二阶导数研究它的单调性,由此求得的取值范围.(3)化简,利用导数,研究零点分布的情况,由此求得的值.

(1)的定义域为{x|x≠0},

<0,解得:x<1,

所以,的单调减区间为(-∞,0)和(0,1)

(2)“当时,恒成立”等价于“当时,恒成立”,其中.构造函数,则.记,则.

(i)若,则上恒成立,上单调递增,因此当时,有,即,所以上单调递增,因此当时,有,即,故恒成立,符合题意.

(ii)若,则上恒成立,所以上单调递减,因此当时,有,即,所以上单调递减,因此时,有,即.故不对任意恒成立,不符合题意.综上所述,的取值范围是.

(3),所以,依题意知关于的方程只有两个实数根,即关于的方程只有两个非零实根,其中.故,或.

(i)若,则,不符合题意;

(ii)若,比较对应项系数,得,解得.不满足,故不符合题意;

(iii)若,同理可得,符合题意,此时.综上所述,的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线与椭圆交于两点,已知 ,若椭圆的离心率,又经过点为坐标原点.

(1)求椭圆的方程;

(2)时,试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

1)若的概率;

(2)若的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆ab0)经过点,且离心率为

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知A0b),Ba0),点P是椭圆C上位于第三象限的动点,直线APBP分别将x轴、y轴于点MN,求证:|AN||BM|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

1)求所取3张卡片上的数字完全相同的概率;

2表示所取3张卡片上的数字的中位数,求的分布列与数学期望.

(注:若三个数满足,则称为这三个数的中位数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,已知PC⊥BC,PC⊥AC,点E,F,G分别是所在棱的中点,则下面结论中错误的是 (  )

A.平面EFG∥平面PBC

B.平面EFG⊥平面ABC

C.∠BPC是直线EF与直线PC所成的角

D.∠FEG是平面PAB与平面ABC所成二面角的平面角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:

0

0

3

0

0

1)请将上表数据补充完整,并写出函数的解析式(直接写出结果即可);

2)根据表格中的数据作出在一个周期内的图像;

3)求函数在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案