精英家教网 > 高中数学 > 题目详情

已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x).

①求f(x)在x=3处的切线斜率;
②若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
③若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围.

①0; ②;③

解析试题分析:①根据图像求出一次导函数的解析式,那么函数的导函数就很容易得到了,所求的切线斜率即是其所对应的的导函数值;②根据函数的单调性与导数的关系求出函数的三个单调区间,使得所给的区间在任何一个单调区间内即可求出未知数的取值范围;③由已知条件先导出和有关的不等式,将放在不等式的一边,那么就有的最小值也要大于等于不等式另一边式子的最大值,才能保证不等式恒成立,由函数的单调性和导数的关系求最值即可.
试题解析:①由已知得,其图像如图所示过点,
则有,解得,所以,
所以,则处的切线斜率为0;            3分
②由已知得,
,得,列表如下:

x
(0,1)
1
(1, 3)
3
(3,+∞)

+
0

0
+
..f(x)

极大值

极小值

要使f(x)在上是单调函数,则区间必须完全含在任意一个单调区间内,    5分
所以有,
所以m的取值范围为:
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若时,求的单调区间;
(Ⅱ)时,有极值,且对任意时,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(其中m为常数).
(1) 试讨论在区间上的单调性;
(2) 令函数.当时,曲线上总存在相异两点,使得过点处的切线互相平行,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知函数
(1)若实数求函数上的极值;
(2)记函数,设函数的图像轴交于点,曲线点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求的极大值;
(Ⅱ)若在定义域内单调递减,求满足此条件的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 (R),且该函数曲线处的切线与轴平行.
(Ⅰ)讨论函数的单调性;
(Ⅱ)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数().
(1)当时,求函数的单调区间;
(2)当时,取得极值,求函数上的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数F(x )=x2+aln(x+1)
(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(II)若函数y=f(x)有两个极值点x1,x2,求证:.

查看答案和解析>>

同步练习册答案