已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x).
①求f(x)在x=3处的切线斜率;
②若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
③若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围.
①0; ②;③
解析试题分析:①根据图像求出一次导函数的解析式,那么函数的导函数就很容易得到了,所求的切线斜率即是其所对应的的导函数值;②根据函数的单调性与导数的关系求出函数的三个单调区间,使得所给的区间在任何一个单调区间内即可求出未知数的取值范围;③由已知条件先导出和有关的不等式,将放在不等式的一边,那么就有的最小值也要大于等于不等式另一边式子的最大值,才能保证不等式恒成立,由函数的单调性和导数的关系求最值即可.
试题解析:①由已知得,其图像如图所示过点和,
则有,解得,所以,
所以,则即在处的切线斜率为0; 3分
②由已知得,
令,得,列表如下:
要使f(x)在上是单调函数,则区间必须完全含在任意一个单调区间内, 5分x (0,1) 1 (1, 3) 3 (3,+∞) + 0 - 0 + ..f(x) 极大值 极小值
所以有或或,
所以m的取值范围为:
科目:高中数学 来源: 题型:解答题
已知函数,(其中m为常数).
(1) 试讨论在区间上的单调性;
(2) 令函数.当时,曲线上总存在相异两点、,使得过、点处的切线互相平行,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分)已知函数
(1)若实数求函数在上的极值;
(2)记函数,设函数的图像与轴交于点,曲线在点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求在的延长线上,在的延长线上,且对角线过点.已知米,米。
(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当,的长度分别是多少时,花坛的面积最大?并求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数F(x )=x2+aln(x+1)
(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(II)若函数y=f(x)有两个极值点x1,x2且,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com