分析 (1)要证明DC∥平面ABE,关键是要在平面ABE中找到可能与DC平行的直线,观察发现BE满足要求,根据已知证明BE∥DC,再根据线面平行的判定定理即可求解;
(2)要证明AF⊥平面BCDE,由我们要证明AF与平面BCDE中两条相交直线都垂直,由题意分析易证DC、BC均与AF垂直.
解答 证明:(1)∵DC⊥平面ABC,EB⊥平面ABC
∴DC∥EB,又∵DC?平面ABE,EB?平面ABE,
∴DC∥平面ABE.
(2)DC⊥平面ABC,AF?平面ABC,∴DC⊥AF,
又∵AB=AC,F为BC的中点,
∴AF⊥BC,
∵BC∩DC=C,
∴AF⊥平面BCDE.
点评 本题考查直线和平面垂直、平行的判定,证明时,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 14π | B. | 16π | C. | 13π | D. | 15π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 最小正周期为π的奇函数 | B. | 最小正周期为$\frac{π}{2}$的偶函数 | ||
C. | 最小正周期为$\frac{π}{2}$的奇函数 | D. | 最小正周期为π的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com