某旅游公司提供甲、乙、丙三处旅游景点,游客选择游玩哪个景点互不影响,已知某游客选择游甲地而不选择游乙地和丙地的概率为0.08,选择游甲地和乙地而不选择游丙地的概率为0.12,在甲、乙、丙三处旅游景点中至少选择游一个景点0.88,用表示游客在甲、乙、丙三处旅游景点中选择游玩的景点数和没有选择游玩的景点数的乘积.
(Ⅰ)记“函数是R上的偶函数”为事件A,求事件A的概率;
(Ⅱ)求的概率分布列及数学期望.
(Ⅰ)0.24;
(Ⅱ)的概率分布列为:
其数学期望是:0 2 P 0.24 0.76
解析试题分析:根据独立事件的概率公式分别求出游客选择游玩甲、乙、丙景点的概率,分别求出求事件A的概率和的概率分布列及数学期望.
试题解析:
解:设该游客选择游玩甲、乙、丙景点的概率依次为,由题意知
解得 (3分)
(Ⅰ)依题意,的所有可能取值为0,2.
=0的意义是:该游客游玩的旅游景点数为3,没游玩的旅游景点数为0;或游玩的旅游景点数为0,没游玩的旅游景点数为3,
故 (6分)
而函数是R上的偶函数时=0,
所以. (8分)
(Ⅱ)由(Ⅰ)知 (10分)
的概率分布列为:
其数学期望是:. (12分)0 2 P 0.24 0.76
考点:独立事件的概率
科目:高中数学 来源: 题型:解答题
学校举行演讲比赛,高二(12)班有4名男同学和3名女同学都很想参加这次活动,现从中选一名男同学和一名女同学代表本班参赛,求女同学甲参赛的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部人中随机抽取人为优秀的概率为.
| 优秀 | 非优秀 | 合计 |
甲班 | | | |
乙班 | | | |
合计 | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个袋子里装有7个球,其中有红球4个, 编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中, 含有编号为3的球的概率;
(Ⅱ)在取出的4个球中, 红球编号的最大值设为X,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有7名奥运会志愿者,其中志愿者通晓日语,通晓俄语, 通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求被选中的概率;(5分);(2)求不全被选中的概率.(5分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.
(Ⅰ)从袋子中摸出3个球,求摸出的球为2个红球和1个白球的概率;
(Ⅱ)从袋子中摸出两个球,其中白球的个数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取的20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到频率分布表如下:
(1)求表中的值及分数在范围内的学生数,并估计这次考试全校学生数学成绩及格率(分数在范围为及格);
(2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量(件) | 1≤n≤3 | 4≤n≤6 | 7≤n≤9 | 10≤n≤12 | n≥13 |
顾客数(人) | 20 | 10 | 5 | ||
结算时间(分钟/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。
组号 | 分组 | 频数 | 频率 |
第一组 | [160,165) | 5 | 0.05 |
第二组 | [165,170) | 35 | 0.35 |
第三组 | [170,175) | 30 | a |
第四组 | [175,180) | b | 0.2 |
第五组 | [180,185) | 10 | 0.1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com