【题目】已知函数;
讨论的极值点的个数;
若,求证:.
【答案】(1)当a≤0时,f(x)无极值点;当a>0时,函数y=f(x)有一个极大值点,无极小值点;(2)见解析
【解析】
:(1)先求一阶导函数的根,求解或的解集,写出单调区间,最后判断极值点。
(2)根据第(1)问的结论,若,转化为证明.
:(1)根据题意可得,,
当时,,函数是减函数,无极值点;
当时,令,得,即,
又在上存在一解,不妨设为,
所以函数在上是单调递增的,在上是单调递减的.
所以函数有一个极大值点,无极小值点;
总之:当时,无极值点;
当时,函数有一个极大值点,无极小值点.
(2),,
由(1)可知有极大值,且满足①,
又在上是增函数,且,所以,
又知:,②
由①可得,代入②得,
令,则恒成立,
所以在上是增函数,
所以,即,
所以.
科目:高中数学 来源: 题型:
【题目】(本大题满分12分)
随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:
(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求关于的线性回归方程,并预测公司2017年4月的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为元/辆和1200元/辆的、两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如下:
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考公式:回归直线方程为,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 设命题p:函数y=在定义域上为减函数;命题q:a,b∈(0,+∞),当a+b=1时,+=3.以下说法正确的是( )
A. p∨q为真B. p∧q为真
C. p真q假D. p,q均假
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一年级共有名学生,其中男生名,女生名,该校组织了一次口语模拟考试(满分为分).为研究这次口语考试成绩为高分是否与性别有关,现按性别采用分层抽样抽取名学生的成绩,按从低到高分成,,,,,,七组,并绘制成如图所示的频率分布直方图.已知的频率等于的频率,的频率与的频率之比为,成绩高于分的为“高分”.
(1)估计该校高一年级学生在口语考试中,成绩为“高分”的人数;
(2)请你根据已知条件将下列列联表补充完整,并判断是否有的把握认为“该校高一年级学生在本次口语考试中成绩及格(分以上(含分)为及格)与性别有关”?
口语成绩及格 | 口语成绩不及格 | 合计 | |
男生 | |||
女生 | |||
合计 |
附临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com