精英家教网 > 高中数学 > 题目详情

【题目】已知函数

讨论的极值点的个数;

,求证:

【答案】(1)a0时,f(x)无极值点;当a0时,函数y=f(x)有一个极大值点,无极小值点;(2)见解析

【解析】

:(1)先求一阶导函数的根,求解的解集写出单调区间最后判断极值点。

(2)根据第(1)问的结论,若,转化为证明.

:(1)根据题意可得,

时,,函数是减函数,无极值点;

时,令,得,即

上存在一解,不妨设为

所以函数上是单调递增的,在上是单调递减的.

所以函数有一个极大值点,无极小值点;

总之:当时,无极值点;

时,函数有一个极大值点,无极小值点.

(2)

由(1)可知有极大值,且满足①,

上是增函数,且,所以

又知:,②

由①可得,代入②得

,则恒成立,

所以上是增函数,

所以,即

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本大题满分12分)

随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求关于的线性回归方程,并预测公司2017年4月的市场占有率;

(Ⅱ)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如下:

经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

参考公式:回归直线方程为,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 设命题p:函数y在定义域上为减函数;命题qab(0,+∞),当ab=1时,=3.以下说法正确的是(  )

A. pq为真B. pq为真

C. pqD. pq均假

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级共有名学生,其中男生名,女生名,该校组织了一次口语模拟考试(满分为分).为研究这次口语考试成绩为高分是否与性别有关,现按性别采用分层抽样抽取名学生的成绩,按从低到高分成七组,并绘制成如图所示的频率分布直方图.已知的频率等于的频率,的频率与的频率之比为,成绩高于分的为“高分”.

(1)估计该校高一年级学生在口语考试中,成绩为“高分”的人数;

(2)请你根据已知条件将下列列联表补充完整,并判断是否有的把握认为“该校高一年级学生在本次口语考试中成绩及格(分以上(含分)为及格)与性别有关”?

口语成绩及格

口语成绩不及格

合计

男生

女生

合计

附临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)当时,求方程的解;

(3)若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,解不等式

(2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,,当时,,则不等式的解集为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为, 当时,, 则函数在区间上的所有零点的和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,直线过定点P(2,0),斜率为。当为何值时,直线与抛物线:

(1)只有一个公共点;

(2)有两个公共点;

(3)没有公共点。

查看答案和解析>>

同步练习册答案