精英家教网 > 高中数学 > 题目详情
已知f(x)=
1+lnx
x

(1)若函数f(x)在区间(a,a+1)上有极值,求实数a的取值范围;
(2)若关于x的方程f(x)=x2-2x+k有实数解,求实数k的取值范围;
(3)当n∈N*,n≥2时,求证:nf(n)<2+
1
2
+
1
3
+…+
1
n-1
分析:(1)函数f(x)在区间(a,a+1)上有极值?f′(x)=0在(a,a+1)上有根,结合条件由函数的单调性可得函数有唯一极值点x=1,1∈(a,a+1).
(2)构造函数g(x)=x2-2x+k,若关于x的方程f(x)=x2-2x+k有实数解?f(x)=g(x)有实数解?g(x)min=g(1)≤f(x)max
(法二)由f(x)=x2-2x+k分离系数k=
1+lnx
x
+2x-x2
,构造函数h(x)=
1+lnx
x
+2x-x2 ,(x>0)
,由题意可得,k≤h(x)max
(3)结合函数f(x)在(1,+∞)上的单调性可得,f (
1
n
+1)<f(1)=1
?1+f(1+
1
n
)<1+f(1)
?ln (n+1)- lnn<
1
n
,利用该结论分别把n=1,2,3,…代入叠加可证.
解答:解:(1)∵f(x)=
1+lnx
x
,∴f′(x)=
1
x
•x-(1+lnx)
x2
=-
lnx
x2

∴当x∈(0,1)时,f'(x)>0;当x∈(1,+∞)时,f'(x)<0;
∴函数f(x)在区间(0,1)上为增函数;在区间(1,+∞)为减函数(3分)
∴当x=1时,函数f(x)取得极大值,而函数f(x)在区间(a,a+1)有极值.
a<1
a+1>1
,解得0<a<1
(2)由(1)得f(x)的极大值为f(1)=1,令g(x)=x2-2x+k,
所以当x=1时,函数g(x)取得最小值g(1)=k-1,
又因为方程f(x)=x2-2x+k有实数解,那么k-1≤1,即k≤2,所以实数k的取值范围是:k≤2

解法二:∵f(x)=x2-2x+k,∴k=
1+lnx
x
+2x-x2

令h(x)=
1+lnx
x
+2x-x2
,所以h'(x)=-
lnx
x2
+2-2x,当x=1时,h'(x)=0
当x∈(0,1)时,h'(x)>0;
当x∈(1,+∞)时,h'(x)<0
∴当x=1时,函数h(x)取得极大值为h(1)=2
∴当方程f(x)=x2-2x+k有实数解时,k≤2.)
(3)∵函数f(x)在区间(1,+∞)为减函数,而1+
1
n
>1(n∈N*,n≥2)

f(1+
1
n
)<f(1)=1
,∴1+ln(1+
1
n
)<1+
1
n
,即ln(n+1)-lnn<
1
n

∴lnn=ln2-ln1+ln3-ln2+…+lnn-ln(n-1)<1+
1
2
+
1
3
+…+
1
n-1

1+lnn<2+
1
2
+
1
3
+…+
1
n-1

而n•f(n)=1+lnn,
nf(n)<2+
1
2
+
1
3
+…+
1
n-1
,结论成立
点评:本题考查函数存在极值的性质,函数与方程的转化,及利用函数的单调性证明不等式,要注意叠加法及放缩法在证明不等式中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F(1,0),P是平面上一动点,P到直线l:x=-1上的射影为点N,且满足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)过点M(1,2)作曲线C的两条弦MD,ME,且MD,ME所在直线的斜率为k1,k2,满足k1k2=1,
求证:直线DE过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x=-1的方向向量为
a
及定点F(1,0),动点M,N,G满足
MN
-
a
=0,
MN
+
MF
=2
MG
MG
•(
MN
-
MF
)=0,其中点N在直线l上.
(1)求动点M的轨迹C的方程;
(2)设A、B是轨迹C上异于原点O的两个不同动点,直线OA和OB的倾斜角分别为α和β,若α+β=θ为定值(0<θ<π),试问直线AB是否恒过定点,若AB恒过定点,请求出该定点的坐标,若AB不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a(x-1)2
2x+b
,曲线y=f(x)
与直线l:4x+3y-5=0切于点A的横坐标为2,g(x)=2x-
1
3

(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间;
(3)若对于一切x∈[2,5],总存在x1∈[m,n],使f(x)=g(x1)成立,求n-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(1,0),P是平面上一动点,P到直线l:x=-1上的射影为点N,且满足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)过点M(1,2)作曲线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1,k2变化且满足k1+k2=-1时,证明直线AB恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)已知F(1,0),P是平面上一动点,P在直线l:x=-1上的射影为点N,且满足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)过F的直线与轨迹C交于A、B两点,试问在直线l上是否存在一点Q,使得△QAB为等边三角形?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案